Delphi Class implementation of the RBJ filters¶
- Author or source: moc.liamtoh@retsbomyrgnayrev
- Type: Delphi class implementation of the RBJ filters
- Created: 2006-07-11 08:16:46
notes¶
I haven't tested this code thoroughly as it's pretty much a straight conversion from
Arguru c++ implementation.
code¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | {
RBJ Audio EQ Cookbook Filters
A pascal conversion of arguru[AT]smartelectronix[DOT]com's
c++ implementation.
WARNING:This code is not FPU undernormalization safe.
Filter Types
0-LowPass
1-HiPass
2-BandPass CSG
3-BandPass CZPG
4-Notch
5-AllPass
6-Peaking
7-LowShelf
8-HiShelf
}
unit uRbjEqFilters;
interface
uses math;
type
TRbjEqFilter=class
private
b0a0,b1a0,b2a0,a1a0,a2a0:single;
in1,in2,ou1,ou2:single;
fSampleRate:single;
fMaxBlockSize:integer;
fFilterType:integer;
fFreq,fQ,fDBGain:single;
fQIsBandWidth:boolean;
procedure SetQ(NewQ:single);
public
out1:array of single;
constructor create(SampleRate:single;MaxBlockSize:integer);
procedure CalcFilterCoeffs(pFilterType:integer;pFreq,pQ,pDBGain:single;pQIsBandWidth:boolean);overload;
procedure CalcFilterCoeffs;overload;
function Process(input:single):single; overload;
procedure Process(Input:psingle;sampleframes:integer); overload;
property FilterType:integer read fFilterType write fFilterType;
property Freq:single read fFreq write fFreq;
property q:single read fQ write SetQ;
property DBGain:single read fDBGain write fDBGain;
property QIsBandWidth:boolean read fQIsBandWidth write fQIsBandWidth;
end;
implementation
constructor TRbjEqFilter.create(SampleRate:single;MaxBlockSize:integer);
begin
fMaxBlockSize:=MaxBlockSize;
setLength(out1,fMaxBlockSize);
fSampleRate:=SampleRate;
fFilterType:=0;
fFreq:=500;
fQ:=0.3;
fDBGain:=0;
fQIsBandWidth:=true;
in1:=0;
in2:=0;
ou1:=0;
ou2:=0;
end;
procedure TRbjEqFilter.SetQ(NewQ:single);
begin
fQ:=(1-NewQ)*0.98;
end;
procedure TRbjEqFilter.CalcFilterCoeffs(pFilterType:integer;pFreq,pQ,pDBGain:single;pQIsBandWidth:boolean);
begin
FilterType:=pFilterType;
Freq:=pFreq;
Q:=pQ;
DBGain:=pDBGain;
QIsBandWidth:=pQIsBandWidth;
CalcFilterCoeffs;
end;
procedure TRbjEqFilter.CalcFilterCoeffs;
var
alpha,a0,a1,a2,b0,b1,b2:single;
A,beta,omega,tsin,tcos:single;
begin
//peaking, LowShelf or HiShelf
if fFilterType>=6 then
begin
A:=power(10.0,(DBGain/40.0));
omega:=2*pi*fFreq/fSampleRate;
tsin:=sin(omega);
tcos:=cos(omega);
if fQIsBandWidth then
alpha:=tsin*sinh(log2(2.0)/2.0*fQ*omega/tsin)
else
alpha:=tsin/(2.0*fQ);
beta:=sqrt(A)/fQ;
// peaking
if fFilterType=6 then
begin
b0:=1.0+alpha*A;
b1:=-2.0*tcos;
b2:=1.0-alpha*A;
a0:=1.0+alpha/A;
a1:=-2.0*tcos;
a2:=1.0-alpha/A;
end else
// lowshelf
if fFilterType=7 then
begin
b0:=(A*((A+1.0)-(A-1.0)*tcos+beta*tsin));
b1:=(2.0*A*((A-1.0)-(A+1.0)*tcos));
b2:=(A*((A+1.0)-(A-1.0)*tcos-beta*tsin));
a0:=((A+1.0)+(A-1.0)*tcos+beta*tsin);
a1:=(-2.0*((A-1.0)+(A+1.0)*tcos));
a2:=((A+1.0)+(A-1.0)*tcos-beta*tsin);
end;
// hishelf
if fFilterType=8 then
begin
b0:=(A*((A+1.0)+(A-1.0)*tcos+beta*tsin));
b1:=(-2.0*A*((A-1.0)+(A+1.0)*tcos));
b2:=(A*((A+1.0)+(A-1.0)*tcos-beta*tsin));
a0:=((A+1.0)-(A-1.0)*tcos+beta*tsin);
a1:=(2.0*((A-1.0)-(A+1.0)*tcos));
a2:=((A+1.0)-(A-1.0)*tcos-beta*tsin);
end;
end else //other filter types
begin
omega:=2*pi*fFreq/fSampleRate;
tsin:=sin(omega);
tcos:=cos(omega);
if fQIsBandWidth then
alpha:=tsin*sinh(log2(2)/2*fQ*omega/tsin)
else
alpha:=tsin/(2*fQ);
//lowpass
if fFilterType=0 then
begin
b0:=(1-tcos)/2;
b1:=1-tcos;
b2:=(1-tcos)/2;
a0:=1+alpha;
a1:=-2*tcos;
a2:=1-alpha;
end else //hipass
if fFilterType=1 then
begin
b0:=(1+tcos)/2;
b1:=-(1+tcos);
b2:=(1+tcos)/2;
a0:=1+alpha;
a1:=-2*tcos;
a2:=1-alpha;
end else //bandpass CSG
if fFilterType=2 then
begin
b0:=tsin/2;
b1:=0;
b2:=-tsin/2;
a0:=1+alpha;
a1:=-1*tcos;
a2:=1-alpha;
end else //bandpass CZPG
if fFilterType=3 then
begin
b0:=alpha;
b1:=0.0;
b2:=-alpha;
a0:=1.0+alpha;
a1:=-2.0*tcos;
a2:=1.0-alpha;
end else //notch
if fFilterType=4 then
begin
b0:=1.0;
b1:=-2.0*tcos;
b2:=1.0;
a0:=1.0+alpha;
a1:=-2.0*tcos;
a2:=1.0-alpha;
end else //allpass
if fFilterType=5 then
begin
b0:=1.0-alpha;
b1:=-2.0*tcos;
b2:=1.0+alpha;
a0:=1.0+alpha;
a1:=-2.0*tcos;
a2:=1.0-alpha;
end;
end;
b0a0:=b0/a0;
b1a0:=b1/a0;
b2a0:=b2/a0;
a1a0:=a1/a0;
a2a0:=a2/a0;
end;
function TRbjEqFilter.Process(input:single):single;
var
LastOut:single;
begin
// filter
LastOut:= b0a0*input + b1a0*in1 + b2a0*in2 - a1a0*ou1 - a2a0*ou2;
// push in/out buffers
in2:=in1;
in1:=input;
ou2:=ou1;
ou1:=LastOut;
// return output
result:=LastOut;
end;
{
the process method is overloaded.
use Process(input:single):single;
for per sample processing
use Process(Input:psingle;sampleframes:integer);
for block processing. The input is a pointer to
the start of an array of single which contains
the audio data.
i.e.
RBJFilter.Process(@WaveData[0],256);
}
procedure TRbjEqFilter.Process(Input:psingle;sampleframes:integer);
var
i:integer;
LastOut:single;
begin
for i:=0 to SampleFrames-1 do
begin
// filter
LastOut:= b0a0*(input^)+ b1a0*in1 + b2a0*in2 - a1a0*ou1 - a2a0*ou2;
//LastOut:=input^;
// push in/out buffers
in2:=in1;
in1:=input^;
ou2:=ou1;
ou1:=LastOut;
Out1[i]:=LastOut;
inc(input);
end;
end;
end.
|