

Musicdsp.org

Welcome to musicdsp.org.

Musicdsp.org is a collection of algorithms, thoughts and snippets, gathered for the music dsp community. Most of this data was gathered by and for the people of the splendid Music-DSP mailing list at http://sites.music.columbia.edu/cmc/music-dsp/

Important

Please help us edit these pages at https://github.com/bdejong/musicdsp

	Special thanks: http://www.fxpansion.com for sponsoring a server to host the archive for many, many years

	Special thanks: http://www.dspdimension.com for pointing http://www.musicdsp.com to this site too

Contents:

	Synthesis

	Analysis

	Filters

	Effects

	Other

Indices and tables

	Index

	Search Page

Synthesis

Contents:

	(Allmost) Ready-to-use oscillators

	AM Formantic Synthesis

	Alias-free waveform generation with analog filtering

	Another LFO class

	Another cheap sinusoidal LFO

	Antialiased square generator

	Arbitary shaped band-limited waveform generation (using oversampling and low-pass filtering)

	Audiable alias free waveform gen using width sine

	Band Limited waveforms my way

	Bandlimited sawtooth synthesis

	Bandlimited waveform generation

	Bandlimited waveforms synopsis.

	Bandlimited waveforms…

	Butterworth

	C# Oscilator class

	C++ gaussian noise generation

	Chebyshev waveshaper (using their recursive definition)

	Cubic polynomial envelopes

	DSF (super-set of BLIT)

	Direct pink noise synthesis with auto-correlated generator

	Discrete Summation Formula (DSF)

	Drift generator

	Easy noise generation

	Fast Exponential Envelope Generator

	Fast LFO in Delphi…

	Fast SIN approximation for usage in e.g. additive synthesizers

	Fast Whitenoise Generator

	Fast sine and cosine calculation

	Fast sine wave calculation

	Fast square wave generator

	Gaussian White Noise

	Gaussian White noise

	Generator

	Inverted parabolic envelope

	Matlab/octave code for minblep table generation

	PADsynth synthesys method

	PRNG for non-uniformly distributed values from trigonometric identity

	Parabolic shaper

	Phase modulation Vs. Frequency modulation

	Phase modulation Vs. Frequency modulation II

	Pseudo-Random generator

	PulseQuad

	Pulsewidth modulation

	Quick & Dirty Sine

	Quick and dirty sine generator

	RBJ Wavetable 101

	Randja compressor

	Rossler and Lorenz Oscillators

	SawSin

	Simple Time Stretching-Granular Synthesizer

	Sine calculation

	Smooth random LFO Generator

	Square Waves

	Trammell Pink Noise (C++ class)

	Waveform generator using MinBLEPS

	Wavetable Synthesis

	Weird synthesis

(Allmost) Ready-to-use oscillators

	Author or source: Ross Bencina, Olli Niemitalo, …

	Type: waveform generation

	Created: 2002-01-17 01:01:39

notes

Ross Bencina: original source code poster
Olli Niemitalo: UpdateWithCubicInterpolation

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

	//this code is meant as an EXAMPLE

//uncomment if you need an FM oscillator
//define FM_OSCILLATOR

/*
members are:

float phase;
int TableSize;
float sampleRate;

float *table, dtable0, dtable1, dtable2, dtable3;

->these should be filled as folows... (remember to wrap around!!!)
table[i] = the wave-shape
dtable0[i] = table[i+1] - table[i];
dtable1[i] = (3.f*(table[i]-table[i+1])-table[i-1]+table[i+2])/2.f
dtable2[i] = 2.f*table[i+1]+table[i-1]-(5.f*table[i]+table[i+2])/2.f
dtable3[i] = (table[i+1]-table[i-1])/2.f
*/

float Oscillator::UpdateWithoutInterpolation(float frequency)
{
 int i = (int) phase;

 phase += (sampleRate/(float TableSize)/frequency;

 if(phase >= (float)TableSize)
 phase -= (float)TableSize;

#ifdef FM_OSCILLATOR
 if(phase < 0.f)
 phase += (float)TableSize;
#endif

 return table[i] ;
}

float Oscillator::UpdateWithLinearInterpolation(float frequency)
{
 int i = (int) phase;
 float alpha = phase - (float) i;

 phase += (sampleRate/(float)TableSize)/frequency;

 if(phase >= (float)TableSize)
 phase -= (float)TableSize;

#ifdef FM_OSCILLATOR
 if(phase < 0.f)
 phase += (float)TableSize;
#endif

 /*
 dtable0[i] = table[i+1] - table[i]; //remember to wrap around!!!
 */

 return table[i] + dtable0[i]*alpha;
}

float Oscillator::UpdateWithCubicInterpolation(float frequency)
{
 int i = (int) phase;
 float alpha = phase - (float) i;

 phase += (sampleRate/(float)TableSize)/frequency;

 if(phase >= (float)TableSize)
 phase -= (float)TableSize;

#ifdef FM_OSCILLATOR
 if(phase < 0.f)
 phase += (float)TableSize;
#endif

 /* //remember to wrap around!!!
 dtable1[i] = (3.f*(table[i]-table[i+1])-table[i-1]+table[i+2])/2.f
 dtable2[i] = 2.f*table[i+1]+table[i-1]-(5.f*table[i]+table[i+2])/2.f
 dtable3[i] = (table[i+1]-table[i-1])/2.f
 */

 return ((dtable1[i]*alpha + dtable2[i])*alpha + dtable3[i])*alpha+table[i];
}

AM Formantic Synthesis

	Author or source: Paul Sernine

	Created: 2006-07-05 20:14:14

notes

Here is another tutorial from Doc Rochebois.
It performs formantic synthesis without filters and without grains. Instead, it uses
"double carrier amplitude modulation" to pitch shift formantic waveforms. Just beware the
phase relationships to avoid interferences. Some patches of the DX7 used the same trick
but phase interferences were a problem. Here, Thierry Rochebois avoids them by using
cosine-phased waveforms.

Various formantic waveforms are precalculated and put in tables, they correspond to
different formant widths.
The runtime uses many intances (here 4) of these and pitch shifts them with double
carriers (to preserve the harmonicity of the signal).

This is a tutorial code, it can be optimized in many ways.
Have Fun

Paul

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

	// FormantsAM.cpp

// Thierry Rochebois' "Formantic Synthesis by Double Amplitude Modulation"

// Based on a tutorial by Thierry Rochebois.
// Comments by Paul Sernine.

// The spectral content of the signal is obtained by adding amplitude modulated formantic
// waveforms. The amplitude modulations spectraly shift the formantic waveforms.
// Continuous spectral shift, without losing the harmonic structure, is obtained
// by using crossfaded double carriers (multiple of the base frequency).
// To avoid unwanted interference artifacts, phase relationships must be of the
// "cosine type".

// The output is a 44100Hz 16bit stereo PCM file.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

//Approximates cos(pi*x) for x in [-1,1].
inline float fast_cos(const float x)
{
 float x2=x*x;
 return 1+x2*(-4+2*x2);
}

//Length of the table
#define L_TABLE (256+1) //The last entry of the table equals the first (to avoid a modulo)
//Maximal formant width
#define I_MAX 64
//Table of formants
float TF[L_TABLE*I_MAX];

//Formantic function of width I (used to fill the table of formants)
float fonc_formant(float p,const float I)
{
 float a=0.5f;
 int hmax=int(10*I)>L_TABLE/2?L_TABLE/2:int(10*I);
 float phi=0.0f;
 for(int h=1;h<hmax;h++)
 {
 phi+=3.14159265359f*p;
 float hann=0.5f+0.5f*fast_cos(h*(1.0f/hmax));
 float gaussienne=0.85f*exp(-h*h/(I*I));
 float jupe=0.15f;
 float harmonique=cosf(phi);
 a+=hann*(gaussienne+jupe)*harmonique;
 }
 return a;
}

//Initialisation of the table TF with the fonction fonc_formant.
void init_formant(void)
{ float coef=2.0f/(L_TABLE-1);
 for(int I=0;I<I_MAX;I++)
 for(int P=0;P<L_TABLE;P++)
 TF[P+I*L_TABLE]=fonc_formant(-1+P*coef,float(I));
}

//This function emulates the function fonc_formant
// thanks to the table TF. A bilinear interpolation is
// performed
float formant(float p,float i)
{
 i=i<0?0:i>I_MAX-2?I_MAX-2:i; // width limitation
 float P=(L_TABLE-1)*(p+1)*0.5f; // phase normalisation
 int P0=(int)P; float fP=P-P0; // Integer and fractional
 int I0=(int)i; float fI=i-I0; // parts of the phase (p) and width (i).
 int i00=P0+L_TABLE*I0; int i10=i00+L_TABLE;
 //bilinear interpolation.
 return (1-fI)*(TF[i00] + fP*(TF[i00+1]-TF[i00]))
 + fI*(TF[i10] + fP*(TF[i10+1]-TF[i10]));
}

// Double carrier.
// h : position (float harmonic number)
// p : phase
float porteuse(const float h,const float p)
{
 float h0=floor(h); //integer and
 float hf=h-h0; //decimal part of harmonic number.
 // modulos pour ramener p*h0 et p*(h0+1) dans [-1,1]
 float phi0=fmodf(p* h0 +1+1000,2.0f)-1.0f;
 float phi1=fmodf(p*(h0+1)+1+1000,2.0f)-1.0f;
 // two carriers.
 float Porteuse0=fast_cos(phi0); float Porteuse1=fast_cos(phi1);
 // crossfade between the two carriers.
 return Porteuse0+hf*(Porteuse1-Porteuse0);
}
int main()
{
 //Formant table for various french vowels (you can add your own)
 float F1[]={ 730, 200, 400, 250, 190, 350, 550, 550, 450};
 float A1[]={ 1.0f, 0.5f, 1.0f, 1.0f, 0.7f, 1.0f, 1.0f, 0.3f, 1.0f};
 float F2[]={ 1090, 2100, 900, 1700, 800, 1900, 1600, 850, 1100};
 float A2[]={ 2.0f, 0.5f, 0.7f, 0.7f,0.35f, 0.3f, 0.5f, 1.0f, 0.7f};
 float F3[]={ 2440, 3100, 2300, 2100, 2000, 2500, 2250, 1900, 1500};
 float A3[]={ 0.3f,0.15f, 0.2f, 0.4f, 0.1f, 0.3f, 0.7f, 0.2f, 0.2f};
 float F4[]={ 3400, 4700, 3000, 3300, 3400, 3700, 3200, 3000, 3000};
 float A4[]={ 0.2f, 0.1f, 0.2f, 0.3f, 0.1f, 0.1f, 0.3f, 0.2f, 0.3f};

 float f0,dp0,p0=0.0f;
 int F=7; //number of the current formant preset
 float f1,f2,f3,f4,a1,a2,a3,a4;
 f1=f2=f3=f4=100.0f;a1=a2=a3=a4=0.0f;

 init_formant();
 FILE *f=fopen("sortie.pcm","wb");
 for(int ns=0;ns<10*44100;ns++)
 {
 if(0==(ns%11025)){F++;F%=8;} //formant change
 f0=12*powf(2.0f,4-4*ns/(10*44100.0f)); //sweep
 f0*=(1.0f+0.01f*sinf(ns*0.0015f)); //vibrato
 dp0=f0*(1/22050.0f);
 float un_f0=1.0f/f0;
 p0+=dp0; //phase increment
 p0-=2*(p0>1);
 { //smoothing of the commands.
 float r=0.001f;
 f1+=r*(F1[F]-f1);f2+=r*(F2[F]-f2);f3+=r*(F3[F]-f3);f4+=r*(F4[F]-f4);
 a1+=r*(A1[F]-a1);a2+=r*(A2[F]-a2);a3+=r*(A3[F]-a3);a4+=r*(A4[F]-a4);
 }

 //The f0/fn coefficients stand for a -3dB/oct spectral enveloppe
 float out=
 a1*(f0/f1)*formant(p0,100*un_f0)*porteuse(f1*un_f0,p0)
 +0.7f*a2*(f0/f2)*formant(p0,120*un_f0)*porteuse(f2*un_f0,p0)
 + a3*(f0/f3)*formant(p0,150*un_f0)*porteuse(f3*un_f0,p0)
 + a4*(f0/f4)*formant(p0,300*un_f0)*porteuse(f4*un_f0,p0);

 short s=short(15000.0f*out);
 fwrite(&s,2,1,f);fwrite(&s,2,1,f); //fichier raw pcm stereo
 }
 fclose(f);
 return 0;
}

Comments

	Date: 2007-04-24 12:04:12

	By: Baltazar

Quite interesting and efficient for an algo that does not use any filter ;-)

	Date: 2007-08-14 11:30:14

	By: phoenix-69

Very funny sound !

	Date: 2008-08-19 20:51:30

	By: Wait.

What header files are you including?

Alias-free waveform generation with analog filtering

	Author or source: Magnus Jonsson

	Type: waveform generation

	Created: 2002-01-15 21:25:29

	Linked files: synthesis001.txt.

notes

(see linkfile)

Another LFO class

	Author or source: mdsp

	Created: 2003-08-26 14:56:14

	Linked files: LFO.zip.

notes

This LFO uses an unsigned 32-bit phase and increment whose 8 Most Significant Bits adress
a Look-up table while the 24 Least Significant Bits are used as the fractionnal part.
Note: As the phase overflow automatically, the index is always in the range 0-255.

It performs linear interpolation, but it is easy to add other types of interpolation.

Don't know how good it could be as an oscillator, but I found it good enough for a LFO.
BTW there is also different kind of waveforms.

Modifications:
We could use phase on 64-bit or change the proportion of bits used by the index and the
fractionnal part.

Comments

	Date: 2004-09-07 13:52:17

	By: ku.oc.enydranos@aja

This type of oscillator is know as a numerically controlled oscillator(nco) or phase accumulator sythesiser. Integrated circuits that implement it in hardware are available such as the AD7008 from Analog Devices.
The frequency resolution is very high and is = (SampleRate)/32^2. So if clocked at 44.1Khz the frequency resolution would be 0.00001026Hz!
As you said the output waveform can be whatever shape you choose to put in the lookup table. The phase register is already in saw tooth form.

Regards,
Tony

	Date: 2004-12-22 08:40:40

	By: moc.yddaht@yddaht

It works great!
Here's a Delphi version I just knocked up. Both VCL and KOL supported.

code:
unit PALFO;
//
// purpose: LUT based LFO
// author: © 2004, Thaddy de Koning
// Remarks: Translated from c++ sources by Remy Mueller, www.musicdsp.org

interface
uses
{$IFDEF KOL}
 Windows, Kol,KolMath;
{$ELSE}
 Windows, math;
{$ENDIF}

const
 k1Div24lowerBits = 1/(1 shl 24);

 WFStrings:array[0..4] of string =
 ('triangle','sinus', 'sawtooth', 'square', 'exponent');

type
 Twaveform = (triangle, sinus, sawtooth, square, exponent);

{$IFDEF KOL}
 PPaLfo = ^TPALfo;
 TPaLfo = object(TObj)
{$ELSE}
 TPaLfo = class
{$ENDIF}
 private
 FTable:array[0..256] of Single;// 1 more for linear interpolation
 FPhase,
 FInc:Single;
 FRate: Single;
 FSampleRate: Single;
 FWaveForm: TWaveForm;
 procedure SetRate(const Value: Single);
 procedure SetSampleRate(const Value: Single);
 procedure SetWaveForm(const Value: TWaveForm);
 public
{$IFNDEF KOL}
 constructor create(SampleRate:Single);virtual;
{$ENDIF}
 // increments the phase and outputs the new LFO value.
 // return the new LFO value between [-1;+1]
 function WaveformName:String;
 function Tick:Single;
 // The rate in Hz
 property Rate:Single read FRate write SetRate;
 // The Samplerate
 property SampleRate:Single read FSampleRate write SetSampleRate;
 property WaveForm:TWaveForm read FWaveForm write SetWaveForm;
 end;

{$IFDEF KOL}
function NewPaLfo(aSamplerate:Single):PPaLfo;
{$ENDIF}

implementation

{ TPaLfo }
{$IFDEF KOL}
function NewPaLfo(aSamplerate:Single):PPaLfo;
begin
 New(Result,Create);
 with Result^ do
 begin
 FPhase:=0;
 Finc:=0;
 FSamplerate:=aSamplerate;
 SetWaveform(triangle);
 FRate:=1;
 end;
end;
{$ELSE}
constructor TPaLfo.create(SampleRate: Single);
begin
 inherited create;
 FPhase:=0;
 Finc:=0;
 FSamplerate:=aSamplerate;
 SetWaveform(triangle);
 FRate:=1;
end;
{$ENDIF}

procedure TPaLfo.SetRate(const Value: Single);
begin
 FRate := Value;
 // the rate in Hz is converted to a phase increment with the following formula
 // f[inc = (256*rate/samplerate) * 2^24]
 Finc := (256 * Frate / Fsamplerate) * (1 shl 24);
end;

procedure TPaLfo.SetSampleRate(const Value: Single);
begin
 FSampleRate := Value;
end;

procedure TPaLfo.SetWaveForm(const Value: TWaveForm);
var
 i:integer;
begin
 FWaveForm := Value;
 Case Fwaveform of
 sinus:
 for i:=0 to 256 do
 FTable[i] := sin(2*pi*(i/256));
 triangle:
 begin
 for i:=0 to 63 do
 begin
 FTable[i] := i / 64;
 FTable[i+64] :=(64-i) / 64;
 FTable[i+128] := - i / 64;
 FTable[i+192] := - (64-i) / 64;
 end;
 FTable[256] := 0;
 end;
 sawtooth:
 begin
 for i:=0 to 255 do
 FTable[i] := 2*(i/255) - 1;
 FTable[256] := -1;
 end;
 square:
 begin
 for i:=0 to 127 do
 begin
 FTable[i] := 1;
 FTable[i+128] := -1;
 end;
 FTable[256] := 1;
 end;
 exponent:
 begin
 // symetric exponent similar to triangle
 for i:=0 to 127 do
 begin
 FTable[i] := 2 * ((exp(i/128) - 1) / (exp(1) - 1)) - 1 ;
 FTable[i+128] := 2 * ((exp((128-i)/128) - 1) / (exp(1) - 1)) - 1 ;
 end;
 FTable[256] := -1;
 end;
 end;
end;

function TPaLfo.WaveformName:String;
begin
 result:=WFStrings[Ord(Fwaveform)];
end;

function TPaLfo.Tick: Single;
var
 i:integer;
 frac:Single;
begin
 // the 8 MSB are the index in the table in the range 0-255
 i := Pinteger(Fphase)^ shr 24;
 // and the 24 LSB are the fractionnal part
 frac := (PInteger(Fphase)^ and $00FFFFFF) * k1Div24lowerBits;
 // increment the phase for the next tick
 Fphase :=FPhase + Finc; // the phase overflows itself
 Result:= Ftable[i]*(1-frac) + Ftable[i+1]* frac; // linear interpolation
end;

end.

	Date: 2004-12-22 12:43:17

	By: moc.yddaht@yddaht

Oops,

This one is correct:

code:
unit PALFO;
//
// purpose: LUT based LFO
// author: © 2004, Thaddy de Koning
// Remarks: Translated from c++ sources by Remy Mueller, www.musicdsp.org

interface
uses
{$IFDEF KOL}
 Windows, Kol,KolMath;
{$ELSE}
 Windows, math;
{$ENDIF}

const
 k1Div24lowerBits = 1/(1 shl 24);

 WFStrings:array[0..4] of string =
 ('triangle','sinus', 'sawtooth', 'square', 'exponent');

type
 Twaveform = (triangle, sinus, sawtooth, square, exponent);

{$IFDEF KOL}
 PPaLfo = ^TPALfo;
 TPaLfo = object(TObj)
{$ELSE}
 TPaLfo = class
{$ENDIF}
 private
 FTable:array[0..256] of Single;// 1 more for linear interpolation
 FPhase,
 FInc:dword;
 FRate: Single;
 FSampleRate: Single;
 FWaveForm: TWaveForm;
 procedure SetRate(const Value: Single);
 procedure SetSampleRate(const Value: Single);
 procedure SetWaveForm(const Value: TWaveForm);
 public
{$IFNDEF KOL}
 constructor create(SampleRate:Single);virtual;
{$ENDIF}
 // increments the phase and outputs the new LFO value.
 // return the new LFO value between [-1;+1]
 function WaveformName:String;
 function Tick:Single;
 // The rate in Hz
 property Rate:Single read FRate write SetRate;
 // The Samplerate
 property SampleRate:Single read FSampleRate write SetSampleRate;
 property WaveForm:TWaveForm read FWaveForm write SetWaveForm;
 end;

{$IFDEF KOL}
function NewPaLfo(aSamplerate:Single):PPaLfo;
{$ENDIF}

implementation

{ TPaLfo }
{$IFDEF KOL}
function NewPaLfo(aSamplerate:Single):PPaLfo;
begin
 New(Result,Create);
 with Result^ do
 begin
 FPhase:=0;
 FSamplerate:=aSamplerate;
 SetWaveform(sinus);
 Rate:=1;
 end;
end;
{$ELSE}
constructor TPaLfo.create(SampleRate: Single);
begin
 inherited create;
 FPhase:=0;
 FSamplerate:=aSamplerate;
 SetWaveform(sinus);
 FRate:=1;
end;
{$ENDIF}

procedure TPaLfo.SetRate(const Value: Single);
begin
 FRate := Value;
 // the rate in Hz is converted to a phase increment with the following formula
 // f[inc = (256*rate/samplerate) * 2^24]
 Finc := round((256 * Frate / Fsamplerate) * (1 shl 24));
end;

procedure TPaLfo.SetSampleRate(const Value: Single);
begin
 FSampleRate := Value;
end;

procedure TPaLfo.SetWaveForm(const Value: TWaveForm);
var
 i:integer;
begin
 FWaveForm := Value;
 Case Fwaveform of
 sinus:
 for i:=0 to 256 do
 FTable[i] := sin(2*pi*(i/256));
 triangle:
 begin
 for i:=0 to 63 do
 begin
 FTable[i] := i / 64;
 FTable[i+64] :=(64-i) / 64;
 FTable[i+128] := - i / 64;
 FTable[i+192] := - (64-i) / 64;
 end;
 FTable[256] := 0;
 end;
 sawtooth:
 begin
 for i:=0 to 255 do
 FTable[i] := 2*(i/255) - 1;
 FTable[256] := -1;
 end;
 square:
 begin
 for i:=0 to 127 do
 begin
 FTable[i] := 1;
 FTable[i+128] := -1;
 end;
 FTable[256] := 1;
 end;
 exponent:
 begin
 // symetric exponent similar to triangle
 for i:=0 to 127 do
 begin
 FTable[i] := 2 * ((exp(i/128) - 1) / (exp(1) - 1)) - 1 ;
 FTable[i+128] := 2 * ((exp((128-i)/128) - 1) / (exp(1) - 1)) - 1 ;
 end;
 FTable[256] := -1;
 end;
 end;
end;

function TPaLfo.WaveformName:String;
begin
 result:=WFStrings[Ord(Fwaveform)];
end;

function TPaLfo.Tick: Single;
var
 i:integer;
 frac:Single;
begin
 // the 8 MSB are the index in the table in the range 0-255
 i := Fphase shr 24;
 // and the 24 LSB are the fractionnal part
 frac := (Fphase and $00FFFFFF) * k1Div24lowerBits;
 // increment the phase for the next tick
 Fphase :=FPhase + Finc; // the phase overflows itself
 Result:= Ftable[i]*(1-frac) + Ftable[i+1]* frac; // linear interpolation
end;

end.

Another cheap sinusoidal LFO

	Author or source: moc.cinohp-e@ofni

	Created: 2004-05-14 18:32:57

notes

Some pseudo code for a easy to calculate LFO.

You can even make a rough triangle wave out of this by substracting the output of 2 of
these with different phases.

PJ

code

	1
2
3
4
5
6
7

	r = the rate 0..1

p += r
if(p > 1) p -= 2;
out = p*(1-abs(p));

Comments

	Date: 2004-06-10 21:32:22

	By: moc.regnimmu@psd-cisum

Slick! I like it!

Sincerely,
Frederick Umminger

	Date: 2005-02-23 22:24:03

	By: es.tensse@idarozs.szalab

Great! just what I wanted a fast trinagle lfo. :D

float rate = 0..1;
float phase1 = 0;
float phase2 = 0.1f;

phase1 += rate;
if (phase1>1) phase1 -= 2;

phase2 += rate;
if (phase2>1) phase2 -= 2;

out = (phase1*(1-abs(phase1)) - phase2*(1-abs(phase2))) * 10;

	Date: 2006-08-02 22:10:54

	By: uh.etle.fni@yfoocs

Nice! If you want the output range to be between -1..1 then use:

p += r
if(p > 2) p -= 4;
out = p*(2-abs(p));

	Date: 2006-08-03 10:25:10

	By: uh.etle.fni@yfoocs

A better way of making a triangle LFO (out range is -1..1):

rate = 0..1;
p = -1;
{
 p += rate;
 if (p>1) p -= 4.0f;
 out = abs(-(abs(p)-2))-1;
}

	Date: 2013-11-10 16:51:38

	By: ten.akionelet@isangi

/* this goes from -1 to +1 */
#include <iostream>
#include <math.h>

using namespace std;
int main(int argc, char *argv[]) {

 //r = the rate 0..1
 float r = 0.5f;
 float p = 0.f;
 float result=0.f;
 //--------------
 for(int i=1;i<=2048;i++){
 p += r;
 if(p > 1) p -= 2;
 result = 4*p*(1-fabs(p));
 cout << result;
 cout <<"\r";
 }
 }

Antialiased square generator

	Author or source: Paul Sernine

	Type: 1st April edition

	Created: 2006-04-01 12:46:23

notes

It is based on a code by Thierry Rochebois, obfuscated by me.
It generates a 16bit MONO raw pcm file. Have Fun.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	//sqrfish.cpp
 #include <math.h>
 #include <stdio.h>
 //obfuscation P.Sernine
 int main() {float ccc,cccc=0,CC=0,cc=0,CCCC,
 CCC,C,c; FILE *CCCCCCC=fopen("sqrfish.pcm",
 "wb"); int ccccc= 0; float CCCCC=6.89e-6f;
 for(int CCCCCC=0;CCCCCC<1764000;CCCCCC++){
 if(!(CCCCCC%7350)){if(++ccccc>=30){ ccccc =0;
 CCCCC*=2;}CCC=1;}ccc=CCCCC*expf(0.057762265f*
 "aiakahiafahadfaiakahiahafahadf"[ccccc]);CCCC
 =0.75f-1.5f*ccc;cccc+=ccc;CCC*=0.9999f;cccc-=
 2*(cccc>1);C=cccc+CCCC*CC; c=cccc+CCCC*cc; C
 -=2*(C>1);c-=2*(c>1);C+=2*(C<-1); c+=1+2
 (c<-1);c-=2(c>1);C=C*C*(2 *C*C-4);
 c=c*c*(2*c*c-4); short cccccc=short(15000.0f*
 CCC*(C-c)*CCC);CC=0.5f*(1+C+CC);cc=0.5f*(1+
 c+cc); fwrite(&cccccc,2,1,CCCCCCC);}
 //algo by Thierry Rochebois
 fclose(CCCCCCC);
 return 0000000;}

Arbitary shaped band-limited waveform generation (using oversampling and low-pass filtering)

	Author or source: uh.doilop.cak@egamer

	Created: 2003-01-02 20:27:18

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	Arbitary shaped band-limited waveform generation
(using oversampling and low-pass filtering)

There are many articles about band-limited waveform synthesis techniques, that provide correct and fast methods for generating classic analogue waveforms, such as saw, pulse, and triangle wave. However, generating arbitary shaped band-limited waveforms, such as the "sawsin" shape (found in this source-code archive), seems to be quite hard using these techniques.

My analogue waveforms are generated in a _very_ high sampling rate (actually it's 1.4112 GHz for 44.1 kHz waveforms, using 32x oversampling). Using this sample-rate, the amplitude of the aliasing harmonics are negligible (the base analogue waveforms has exponentially decreasing harmonics amplitudes).

Using a 511-tap windowed sync FIR filter (with Blackman-Harris window, and 12 kHz cutoff frequency) the harmonics above 20 kHz are killed, the higher harmonics (that cause the sharp overshoot at step response) are dampened.

The filtered signal downsampled to 44.1 kHz contains the audible (non-aliased) harmonics only.

This waveform synthesis is performed for wavetables of 4096, 2048, 1024, ... 8, 4, 2 samples. The real-time signal is interpolated from these waveform-tables, using Hermite-(cubic-)interpolation for the waveforms, and linear interpolation between the two wavetables near the required note.

This procedure is quite time-consuming, but the whole waveform (or, in my implementation, the whole waveform-set) can be precalculated (or saved at first launch of the synth) and reloaded at synth initialization.

I don't know if this is a theoretically correct solution, but the waveforms sound good (no audible aliasing). Please let me know if I'm wrong...

Comments

	Date: 2003-01-23 13:26:38

	By: moc.xinortceletrams@xelA

Why can't you use fft/ifft
to synthesis directly wavetables of 2048,1024,..?
It'd be not so
"time consuming" comparing to FIR filtering.
Further cubic interpolation still might give you audible
distortion in some cases.
--Alex.

	Date: 2003-02-02 19:24:23

	By: uh.doilop.cak@egamer

What should I use instead of cubic interpolation? (I had already some aliasing problems with cubic interpolation, but that can be solved by oversampling 4x the realtime signal generation)
Is this theory of generating waves from wavetables of 4096, 2084, ... 8, 4, 2 samples wrong?

	Date: 2003-02-19 17:12:42

	By: moc.xinortceletrams@xelA

I think tablesize should not vary
depending on tone (4096,2048...)
and you'd better stay with the same table size for all notes (for example 4096, 4096...).

To avoid interpolation noise
(it's NOT caused by aliasing)
try to increase wavetable size
and be sure that waveform spectrum has
steep roll off
(don't forget Gibbs phenomena as well).

	Date: 2004-08-24 08:04:28

	By: es.tensse@idarozs.szalab

you say that the higher harmonics (that cause the sharp overshoot at step response) are dampened.
How ? Or is it a result of the filtering ?

	Date: 2005-04-03 07:10:58

	By: uh.doilop.scakam@egamer

Yes. The FIR-filter cutoff is set to 12 kHz, so it dampens the audible frequencies too. This way the frequncies above 20 kHz are about -90 dB (don't remember exactly, but killing all harmonics above 20 kHz was the main reason to set the cutoff to 12 kHz).

Anyway, as Alex suggested, FFT/IFFT seems to be a better solution to this problem.

Audiable alias free waveform gen using width sine

	Author or source: moc.emagno@mortslhad.mikaoj

	Type: Very simple

	Created: 2004-04-07 09:37:32

notes

Warning, my english abilities is terribly limited.

How ever, the other day when finally understanding what bandlimited wave creation is (i am
a noobie, been doing DSP stuf on and off for a half/year) it hit me i can implement one
little part in my synths. It's all about the freq (that i knew), very simple you can
reduce alias (the alias that you can hear that is) extremely by keeping track of your
frequence, the way i solved it is using a factor, afact = 1 - sin(f*2PI). This means you
can do audiable alias free synthesis without very complex algorithms or very huge tables,
even though the sound becomes kind of low-filtered.
Propably something like this is mentioned b4, but incase it hasn't this is worth looking
up

The psuedo code describes it more.

// Druttis

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	f := freq factor, 0 - 0.5 (0 to half samplingrate)

afact(f) = 1 - sin(f*2PI)

t := time (0 to ...)
ph := phase shift (0 to 1)
fm := freq mod (0 to 1)

sine(t,f,ph,fm) = sin((t*f+ph)*2PI + 0.5PI*fm*afact(f))

fb := feedback (0 to 1) (1 max saw)

saw(t,f,ph,fm,fb) = sine(t,f,ph,fb*sine(t-1,f,ph,fm))

pm := pulse mod (0 to 1) (1 max pulse)
pw := pulse width (0 to 1) (1 square)

pulse(t,f,ph,fm,fb,pm,pw) = saw(t,f,ph,fm,fb) - (t,f,ph+0.5*pw,fm,fb) * pm

I am not completely sure about fm for saw & pulse since i cant test that atm. but it should work :) otherwise just make sure fm are 0 for saw & pulse.

As you can see the saw & pulse wave are very variable.

// Druttis

Comments

	Date: 2003-02-05 03:10:00

	By: es.pp.ecafkrad@sitturd

Um, reading it I can see a big flaw...

afact(f) = 1 - sin(f*2PI) is not correct!

should be

afact(f) = 1 - sqrt(f * 2 / sr)

where sr := samplingrate
f should be exceed half sr

	Date: 2003-02-22 16:49:50

	By: moc.ecrofmho@tnerual

f has already be divided by sr, right ? So it should become :

afact (f) = 1 - sqrt (f * 2)

And i see a typo (saw forgotten in the second expression) :

pulse(t,f,ph,fm,fb,pm,pw) = saw(t,f,ph,fm,fb) - saw(t,f,ph+0.5*pw,fm,fb) * pm

However I haven't checked the formula.

	Date: 2003-06-25 08:54:21

	By: ed.xmg@909

Hi Lauent,
I'm new to that DSP stuff and can't get the key to
what'S the meaning of afact? - Can you explain please!? - Thanks in advice!

	Date: 2004-04-16 14:09:26

	By: es.ollehc@sitturd

I've been playing around with this for some time. Expect a major update in a while, as soon as I know how to describe it :)

	Date: 2004-04-16 14:14:34

	By: es.ollehc@sitturd

afact is used as an amplitude factor for fm or fb depending on the carrier frequency. The higher frequency the lower afact. It's not completely resolving the problem with aliasing but it is a cheap way that dramatically reduces it.

Band Limited waveforms my way

	Author or source: Anton Savov (gb.liam@ottna)

	Type: classic Sawtooth example

	Created: 2009-06-22 18:09:08

notes

This is my <ugly> C++ code for generating a single cycle of a Sawtooth in a table
normaly i create my "fundamental" table big enough to hold on around 20-40Hz in the
current Sampling rate
also, i create the table twice as big, i do "mip-maps" then
so the size should be a power of two, say 1024 for 44100Hz = 44100/1024 = ~43.066Hz
then the mip-maps are with decreasing sizes (twice) 512, 256, 128, 64, 32, 16, 8, 4, and 2

if the "gibbs" effect is what i think it is - then i have a simple solution
here is my crappy code:

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	int sz = 1024; // the size of the table
int i = 0;
float *table; // pointer to the table
double scale = 1.0;
double pd; // phase
double omega = 1.0 / (double)(sz);

while (i < sz)
{
 double amp = scale;
 double x = 0.0; // the sample
 double h = 1; // harmonic number (starts from 1)
 double dd; // fix high frequency "ring"
 pd = (double)(i) / (double)(sz); // calc phase
 double hpd = pd; // phase of the harmonic
 while (true) // start looping for this sample
 {
 if ((omega * h) < 0.5) // harmonic frequency is in range?
 {
 dd = cos(omega * h * 2 * pi);
 x = x + (amp * dd * sin(hpd * 2 * pi));
 h = h + 1;
 hpd = pd * h;
 amp = 1.0 / h;
 }
 else { break; }
 }
 table[i] = x;
 ++i;
}

the peaks are around +/- 0.8
a square can be generated by just changing h = h+2; the peaks would be +/- 0.4

any bugs/improvements?

Comments

	Date: 2009-06-22 18:37:34

	By: gb.liam@ottna

excuse me, there is a typo

amp = scale / h;

	Date: 2009-09-20 10:34:18

	By: antto mail bg

for even smoother edges:
dd = cos(sin(omega * h * pi) * 0.5 * pi);
no visual ringing, smooth waveform

	Date: 2009-09-25 04:15:31

	By: antto mail bg

to get +/- 1.0 amplitude: scale = 1.25

Bandlimited sawtooth synthesis

	Author or source: moc.ailet@mlohednal.leuname

	Type: DSF BLIT

	Created: 2002-03-29 18:06:44

	Linked files: synthesis002.txt.

notes

This is working code for synthesizing a bandlimited sawtooth waveform. The algorithm is
DSF BLIT + leaky integrator. Includes driver code.

There are two parameters you may tweak:

1) Desired attenuation at nyquist. A low value yields a duller sawtooth but gets rid of
those annoying CLICKS when sweeping the frequency up real high. Must be strictly less than
1.0!

2) Integrator leakiness/cut off. Affects the shape of the waveform to some extent, esp. at
the low end. Ideally you would want to set this low, but too low a setting will give you
problems with DC.

Have fun!
/Emanuel Landeholm

(see linked file)

Comments

	Date: 2003-02-26 00:58:41

	By: moc.liamtoh@hsats_wobniar

there is no need to use a butterworth design for a simple leaky integrator, in this case actually the
variable curcps can be used directly in a simple: leak += curcps * (blit - leak);

this produces a nearly perfect saw shape in almost all cases

	Date: 2011-05-31 05:25:01

	By: pj.oc.liamtoh@evawtuah

The square wave type will be able to be generated from this source.
Please teach if it is possible.

Bandlimited waveform generation

	Author or source: Joe Wright

	Type: waveform generation

	Created: 2002-01-17 01:06:49

	Linked files: bandlimited.cpp.

	Linked files: bandlimited.pdf.

notes

(see linkfile)

Comments

	Date: 2012-02-10 16:26:11

	By: ed.redienhcsslin@psdcisum

The code to reduce the gibbs effect causes aliasing if a transition is made from wavetable A with x partials to wavetable B with y partials.

The aliasing can clearly be seen in a spectral view.

The problem is, that the volume modification for partial N is different depending on the number of partials the wavetable row contains

Bandlimited waveforms synopsis.

	Author or source: Joe Wright

	Created: 2002-02-11 17:37:20

	Linked files: waveforms.txt.

notes

(see linkfile)

Comments

	Date: 2005-11-15 20:07:11

	By: dflatccrmadotstanforddotedu

The abs(sin) method from the Lane CMJ paper is not bandlimited! It's basically just a crappy method for BLIT.

You forgot to mention Eli Brandt's minBLEP method. It's the best! You just have to know how to properly generate a nice minblep table... (slightly dilated, see Stilson and Smith BLIT paper, at the end regarding table implementation issues)

Bandlimited waveforms…

	Author or source: Paul Kellet

	Created: 2002-01-17 00:56:04

notes

(Quoted from Paul's mail)
Below is another waveform generation method based on a train of sinc functions (actually
an alternating loop along a sinc between t=0 and t=period/2).

The code integrates the pulse train with a dc offset to get a sawtooth, but other shapes
can be made in the usual ways... Note that 'dc' and 'leak' may need to be adjusted for
very high or low frequencies.

I don't know how original it is (I ought to read more) but it is of usable quality,
particularly at low frequencies. There's some scope for optimisation by using a table for
sinc, or maybe a a truncated/windowed sinc?

I think it should be possible to minimise the aliasing by fine tuning 'dp' to slightly
less than 1 so the sincs join together neatly, but I haven't found the best way to do it.
Any comments gratefully received.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	float p=0.0f; //current position
float dp=1.0f; //change in postion per sample
float pmax; //maximum position
float x; //position in sinc function
float leak=0.995f; //leaky integrator
float dc; //dc offset
float saw; //output

//set frequency...

 pmax = 0.5f * getSampleRate() / freqHz;
 dc = -0.498f/pmax;

//for each sample...

 p += dp;
 if(p < 0.0f)
 {
 p = -p;
 dp = -dp;
 }
 else if(p > pmax)
 {
 p = pmax + pmax - p;
 dp = -dp;
 }

 x= pi * p;
 if(x < 0.00001f)
 x=0.00001f; //don't divide by 0

 saw = leak*saw + dc + (float)sin(x)/(x);

Comments

	Date: 2004-09-23 00:07:02

	By: es.ollehc@evawenis

Hi,
Has anyone managed to implement this in a VST?
If anyone could mail me and talk me through it I'd be very grateful. Yes, I'm a total newbie and yes, I'm after a quick-fix solution...we all have to start somewhere, eh?

As it stands, where I should be getting a sawtooth I'm getting a full-on and inaudible signal...!

Even a small clue would be nice.
Cheers,
A

	Date: 2012-01-01 23:17:35

	By: ku.oc.oohay@ekolbdiurd

this sounds quite nice, maybe going to use it an LV 2 plugin

	Date: 2016-01-17 13:24:11

	By: pvdmeer [atorsomething] gmail [point] com

this is really amazing, and easily hacked into a lut-based algo. i'll try windowing it too, but it already looks like aliasing is well within acceptable levels.

Butterworth

	Author or source: ed.luosfosruoivas@naitsirhC

	Type: LPF 24dB/Oct

	Created: 2006-07-16 11:39:35

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	First calculate the prewarped digital frequency:

K = tan(Pi * Frequency / Samplerate);

Now calc some intermediate variables: (see 'Factors of Polynoms' at http://en.wikipedia.org/wiki/Butterworth_filter, especially if you want a higher order like 48dB/Oct)
a = 0.76536686473 * Q * K;
b = 1.84775906502 * Q * K;

K = K*K; (to optimize it a little bit)

Calculate the first biquad:

A0 = (K+a+1);
A1 = 2*(1-K);
A2 =(a-K-1);
B0 = K;
B1 = 2*B0;
B2 = B0;

Calculate the second biquad:

A3 = (K+b+1);
A4 = 2*(1-K);
A5 = (b-K-1);
B3 = K;
B4 = 2*B3;
B5 = B3;

Then calculate the output as follows:

Stage1 = B0*Input + State0;
State0 = B1*Input + A1/A0*Stage1 + State1;
State1 = B2*Input + A2/A0*Stage1;

Output = B3*Stage1 + State2;
State2 = B4*Stage1 + A4/A3*Output + State2;
State3 = B5*Stage1 + A5/A3*Output;

Comments

	Date: 2006-07-18 18:44:09

	By: uh.etle.fni@yfoocs

If you have a Q factor different than 1, then filter won't be a Butterworth filter (in terms of maximally flat passpand). So, your filter is a kind of a tweaked Butterworth filter with added resonance.

Highpass version should be:

A0 = (K+a+1);
A1 = 2*(1-K);
A2 =(a-K-1);
B0 = 1;
B1 = -2;
B2 = 1;

Calculate the second biquad:

A3 = (K+b+1);
A4 = 2*(1-K);
A5 = (b-K-1);
B3 = 1;
B4 = -2;
B5 = 1;

The rest is the same. You might want to leave out B0, B2, B3 and B5 completely, because they all equal to 1, and optimize the highpass loop as:

Stage1 = Input + State0;
State0 = B1*Input + A1/A0*Stage1 + State1;
State1 = Input + A2/A0*Stage1;

Output = Stage1 + State2;
State2 = B4*Stage1 + A4/A3*Output + State2;
State3 = Stage1 + A5/A3*Output;

Anyone confirms this code works? (Being too lazy to throw this into a compiler...)

Cheers,
Peter

	Date: 2006-07-21 11:15:06

	By: uh.etle.fni@yfoocs

And of course it is not a good idea to do divisions in the process loop, because they are very heavy, so the best is to precalculate A1/A0, A2/A0, A4/A3 and A5/A3 after the calculation of coefficients:

inv_A0 = 1.0/A0;
A1A0 = A1 * inv_A0;
A2A0 = A2 * inv_A0;

inv_A3 = 1.0/A3;
A4A3 = A4 * inv_A3;
A5A3 = A5 * inv_A3;

(The above should be faster than writing

A1A0 = A1/A0;
A2A0 = A2/A0;
A4A3 = A4/A3;
A5A3 = A5/A3;

but I think some compilers do this optimization automatically.)

Then the lowpass process loop becomes

Stage1 = B0*Input + State0;
State0 = B1*Input + A1A0*Stage1 + State1;
State1 = B2*Input + A2A0*Stage1;

Output = B3*Stage1 + State2;
State2 = B4*Stage1 + A4A3*Output + State2;
State3 = B5*Stage1 + A5A3*Output;

Much faster, isn't it?

	Date: 2006-07-31 22:48:39

	By: ed.luosfosruoivas@naitsirhC

Once you figured it out, it's even possible to do higher order butterworth shelving filters. Here's an example of an 8th order lowshelf.

First we start as usual prewarping the cutoff frequency:

K = tan(fW0*0.5);

Then we settle up the Coefficient V:

V = Power(GainFactor,-1/4)-1;

Finally here's the loop to calculate the filter coefficients:

for i = 0 to 3
{
cm = cos(PI*(i*2+1) / (2*8));

B[3*i+0] = 1/ (1 + 2*K*cm + K*K + 2*V*K*K + 2*V*K*cm + V*V*K*K);
B[3*i+1] = 2 * (1 - K*K - 2*V*K*K - V*V*K*K);
B[3*i+2] = (-1 + 2*K*cm - K*K - 2*V*K*K + 2*V*K*cm - V*V*K*K);
A[3*i+0] = (1-2*K*cm+K*K);
A[3*i+1] = 2*(-1 +K*K);
A[3*i+2] = (1+2*K*cm+K*K);
}

	Date: 2006-08-01 23:35:12

	By: uh.etle.fni@yfoocs

Hmm... interesting. I guess the phase response/group delay gets quite funky, which is generally unwanted for an equalizer.

I think the 1/ is not necessary for the first B coefficient! (of course you divide all the other coeffs with the inverse of that coeff at the end...)

I guess the next will be Chebyshev shelving filters ;)

BTW did you check whether my 4 pole highpass Butterworth code is correct?

Peter

	Date: 2006-08-02 02:19:57

	By: ed.luosfosruoivas@naitsirhC

The 1/ is of course an error here. It's left of my own implementation, where I divide directly. Also I think A and B is exchanged.

I've already nearly done all the different filter types (except elliptic filters), but I won't post too much here.
The highpass maybe a highpass, but not the exact complementary. At least my (working) implementation looks different.

The lowpass<->highpass transform is to replace s with 1/s and by doing this, more than one sign is changing.

	Date: 2006-08-02 12:32:01

	By: uh.etle.fni@yfoocs

Different authors tend to mix up A and B coeffs.

If I take this lowpass derived by bilinear transform and change B0 and B2 to 1, and B1 to -2 then I get a perfect highpass. At least that's what I see in FilterExplorer. Probably you could get the same by replacing s with 1/s and deriving it by bilinear transform.

Well, there are many ways to get a filter working, for example if I replace tan(PI*w) with 1.0/tan(PI*w), inverse the sign of B1, and replace A1 = 2*(1-K) with A1 = 2*(K-1), I also get the same highpass.

Well, the reason for the sign inversion is that the coeffs you named B1 and B2 here are responsible for the locations of the zeroes. B1 is responsible for the angle, and B2 is for the radius, so if you invert B1 then the zeroes get on the opposite side of the unit circle, so you get a highpass filter. You then need to adjust the gain coefficient (B0) so that the passband gain is 1. Well, this is not a very precise explanation, but this is the reason why this works.

	Date: 2006-08-02 14:17:19

	By: ed.luosfosruoivas@naitsirhC

Ok, you're right. I've been doing too much stuff these days that I missed that simple thing. Your version is even numerical better, because there is less potential of annihilation. Thanks for that.

Btw. the group delay really get a little bit 'funky', i've also noticed that, but for not too high orders it doesn't hurt that much.

	Date: 2006-08-02 20:29:36

	By: uh.etle.fni@yfoocs

Well, it isn't a big problem unless you start modulating the filter very fast... then you get this strange pitch-shifting effect ;)

Well, I read sometimes that when you do EQing, phase is a very important factor. I guess that's why ppl sell a lot of linear phase EQ plugins. Or just the marketing? Don't know, haven't compared linear and non-linear phase stuff very much..

	Date: 2010-03-05 18:45:57

	By: moc.xocmdj@xocmdj

State2 = B4*Stage1 + A4/A3*Output + State2;
should read
State2 = B4*Stage1 + A4/A3*Output + State3;

C# Oscilator class

	Author or source: neotec

	Type: Sine, Saw, Variable Pulse, Triangle, C64 Noise

	Created: 2007-01-08 10:49:36

notes

Parameters:

Pitch: The Osc's pitch in Cents [0 - 14399] startig at A -> 6.875Hz
Pulsewidth: [0 - 65535] -> 0% to 99.99%
Value: The last Output value, a set to this property 'syncs' the Oscilator

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

	public class SynthOscilator
{
 public enum OscWaveformType
 {
 SAW, PULSE, TRI, NOISE, SINE
 }

 public int Pitch
 {
 get
 {
 return this._Pitch;
 }
 set
 {
 this._Pitch = this.MinMax(0, value, 14399);
 this.OscStep = WaveSteps[this._Pitch];
 }
 }

 public int PulseWidth
 {
 get
 {
 return this._PulseWidth;
 }
 set
 {
 this._PulseWidth = this.MinMax(0, value, 65535);
 }
 }

 public OscWaveformType Waveform
 {
 get
 {
 return this._WaveForm;
 }
 set
 {
 this._WaveForm = value;
 }
 }

 public int Value
 {
 get
 {
 return this._Value;
 }
 set
 {
 this._Value = 0;
 this.OscNow = 0;
 }
 }

 private int _Pitch;
 private int _PulseWidth;
 private int _Value;
 private OscWaveformType _WaveForm;

 private int OscNow;
 private int OscStep;
 private int ShiftRegister;

 public const double BaseFrequence = 6.875;
 public const int SampleRate = 44100;
 public static int[] WaveSteps = new int[0];
 public static int[] SineTable = new int[0];

 public SynthOscilator()
 {
 if (WaveSteps.Length == 0)
 this.CalcSteps();

 if (SineTable.Length == 0)
 this.CalcSine();

 this._Pitch = 7200;
 this._PulseWidth = 32768;
 this._WaveForm = OscWaveformType.SAW;

 this.ShiftRegister = 0x7ffff8;

 this.OscNow = 0;
 this.OscStep = WaveSteps[this._Pitch];
 this._Value = 0;
 }

 private void CalcSteps()
 {
 WaveSteps = new int[14400];

 for (int i = 0; i < 14400; i++)
 {
 double t0, t1, t2;

 t0 = Math.Pow(2.0, (double)i / 1200.0);
 t1 = BaseFrequence * t0;
 t2 = (t1 * 65536.0) / (double)this.SampleRate;

 WaveSteps[i] = (int)Math.Round(t2 * 4096.0);
 }
 }

 private void CalcSine()
 {
 SineTable = new int[65536];

 double s = Math.PI / 32768.0;

 for (int i = 0; i < 65536; i++)
 {
 double v = Math.Sin((double)i * s) * 32768.0;

 int t = (int)Math.Round(v) + 32768;

 if (t < 0)
 t = 0;
 else if (t > 65535)
 t = 65535;

 SineTable[i] = t;
 }
 }

 public override int Run()
 {
 int ret = 32768;
 int osc = this.OscNow >> 12;

 switch (this._WaveForm)
 {
 case OscWaveformType.SAW:
 ret = osc;
 break;
 case OscWaveformType.PULSE:
 if (osc < this.PulseWidth)
 ret = 65535;
 else
 ret = 0;
 break;
 case OscWaveformType.TRI:
 if (osc < 32768)
 ret = osc << 1;
 else
 ret = 131071 - (osc << 1);
 break;
 case OscWaveformType.NOISE:
 ret = ((this.ShiftRegister & 0x400000) >> 11) |
 ((this.ShiftRegister & 0x100000) >> 10) |
 ((this.ShiftRegister & 0x010000) >> 7) |
 ((this.ShiftRegister & 0x002000) >> 5) |
 ((this.ShiftRegister & 0x000800) >> 4) |
 ((this.ShiftRegister & 0x000080) >> 1) |
 ((this.ShiftRegister & 0x000010) << 1) |
 ((this.ShiftRegister & 0x000004) << 2);
 ret <<= 4;
 break;
 case OscWaveformType.SINE:
 ret = SynthTools.SineTable[osc];
 break;
 default:
 break;
 }

 this.OscNow += this.OscStep;

 if (this.OscNow > 0xfffffff)
 {
 int bit0 = ((this.ShiftRegister >> 22) ^ (this.ShiftRegister >> 17)) & 0x1;
 this.ShiftRegister <<= 1;
 this.ShiftRegister &= 0x7fffff;
 this.ShiftRegister |= bit0;
 }

 this.OscNow &= 0xfffffff;

 this._Value = ret - 32768;

 return this._Value;
 }

 public int MinMax(int a, int b, int c)
 {
 if (b < a)
 return a;
 else if (b > c)
 return c;
 else
 return b;
 }
}

C++ gaussian noise generation

	Author or source: ku.oc.latigidpxe@luap

	Type: gaussian noise generation

	Created: 2004-05-20 09:12:55

notes

References :
Tobybears delphi noise generator was the basis. Simply converted it to C++.
Link for original is:
http://www.musicdsp.org/archive.php?classid=0#129
The output is in noise.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	/* Include requisits */
#include <cstdlib>
#include <ctime>

/* Generate a new random seed from system time - do this once in your constructor */
srand(time(0));

/* Setup constants */
const static int q = 15;
const static float c1 = (1 << q) - 1;
const static float c2 = ((int)(c1 / 3)) + 1;
const static float c3 = 1.f / c1;

/* random number in range 0 - 1 not including 1 */
float random = 0.f;

/* the white noise */
float noise = 0.f;

for (int i = 0; i < numSamples; i++)
{
 random = ((float)rand() / (float)(RAND_MAX + 1));
 noise = (2.f * ((random * c2) + (random * c2) + (random * c2)) - 3.f * (c2 - 1.f)) * c3;
}

Comments

	Date: 2009-07-10 17:39:39

	By: moc.enon@enon

What's the difference between the much simpler noise generator:

randSeed = (randSeed * 196314165) + 907633515; out=((int)randSeed)*0.0000000004656612873077392578125f;

and this one? they both sound the same to my ears...

	Date: 2011-07-22 11:07:12

	By: moc.nwonknu@nwonknu

How can you change the variance (sigma)?

	Date: 2013-06-12 12:30:33

	By: moc.enon@lubeb

This is NOT a good code to generate Gaussian Noice. Look into:
 (random * c2) + (random * c2) + (random * c2)
It is all nonsense! The reason of adding three numbers it the Central Limit Theorem to aproximate Gaussian distribution. But the random numbers inside must differ, which is not the case. The code on original link http://www.musicdsp.org/archive.php?classid=0#129 is correct.

Chebyshev waveshaper (using their recursive definition)

	Author or source: mdsp

	Type: chebyshev

	Created: 2005-01-10 18:03:29

notes

someone asked for it on kvr-audio.

I use it in an unreleased additive synth.
There's no oversampling needed in my case since I feed it with a pure sinusoid and I
control the order to not have frequencies above Fs/2. Otherwise you should oversample by
the order you'll use in the function or bandlimit the signal before the waveshaper. unless
you really want that aliasing effect... :)

I hope the code is self-explaining, otherwise there's plenty of sites explaining chebyshev
polynoms and their applications.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	float chebyshev(float x, float A[], int order)
{
 // To = 1
 // T1 = x
 // Tn = 2.x.Tn-1 - Tn-2
 // out = sum(Ai*Ti(x)) , i C {1,..,order}
 float Tn_2 = 1.0f;
 float Tn_1 = x;
 float Tn;
 float out = A[0]*Tn_1;

 for(int n=2;n<=order;n++)
 {
 Tn = 2.0f*x*Tn_1 - Tn_2;
 out += A[n-1]*Tn;
 Tn_2 = Tn_1;
 Tn_1 = Tn;
 }
 return out;
}

Comments

	Date: 2005-01-10 18:10:12

	By: mdsp

BTW you can achieve an interresting effect by feeding back the ouput in the input. it adds a kind of interresting pitched noise to the signal.

I think VirSyn is using something similar in microTERA.

	Date: 2005-01-11 19:33:03

	By: ku.oc.oodanaw.eiretcab@nad

Hi, it was me that asked about this on KvR. It seems that it is possible to use such a waveshaper on a non-sinusoidal input without oversampling; split the input signal into bands, and use the highest frequency in each band to determine which order polynomials to send each band to. The idea about feeding back the output to the input occured to me as well, good to know that such an effect might be interesting... If I come across any other points of interest while coding this plugin, I'll be glad to mention them on here.

Dan

	Date: 2005-01-12 11:48:00

	By: mdsp

of course you can use it on non sinusoidal input, but you won't achieve the same result.

if you express your input as a sum of sinusoids of frequencies [f0 f1 f2 ...] and use the chebyshev polynom of order 2 you won't have 2*[f0 f1 f2...] as the resulting frequencies.
As it's a nonlinear function you can't use the superposition theorem anymore.

beware that chebyshev polynoms are sensitive to
the range of your input. Your sinusoid has to have a gain exaclty equal to 1 in order to work as expected.

that's a nice trick but it has it's limits.

Cubic polynomial envelopes

	Author or source: Andy Mucho

	Type: envellope generation

	Created: 2002-01-17 00:59:16

notes

This function runs from:
startlevel at Time=0
midlevel at Time/2
endlevel at Time
At moments of extreme change over small time, the function can generate out
of range (of the 3 input level) numbers, but isn't really a problem in
actual use with real numbers, and sensible/real times..

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	time = 32
startlevel = 0
midlevel = 100
endlevel = 120
k = startlevel + endlevel - (midlevel * 2)
r = startlevel
s = (endlevel - startlevel - (2 * k)) / time
t = (2 * k) / (time * time)
bigr = r
bigs = s + t
bigt = 2 * t

for(int i=0;i<time;i++)
{
 bigr = bigr + bigs
 bigs = bigs + bigt
}

Comments

	Date: 2004-01-13 12:31:55

	By: ti.otinifni@reiruoceht

I have try this and it works fine, but what hell is bigs?????

bye bye

 float time = (float)pRect.Width(); //time in sampleframes
 float startlevel = (float)pRect.Height(); //max h vedi ma 1.0
 float midlevel = 500.f;
 float endlevel = 0.f;

 float k = startlevel + endlevel - (midlevel * 2);
 float r = startlevel;
 float s = (endlevel - startlevel - (2 * k)) / time;
 float t= (2 * k) / (time * time);

 float bigr = r;
 float bigs = s + t;
 float bigt = 2 * t;

 for(int i=0;i<time;i++)
 {
 bigr = bigr + bigs;
 bigs = bigs + bigt; //bigs? co'è
 pDC->SetPixel(i,(int)bigr,RGB (0, 0, 0));
 }

	Date: 2006-10-08 17:50:48

	By: if.iki@xemxet

the method uses a technique called forward differencing, which is based on the fact that a successive values of an polynomial function can be calculated using only additions instead of evaluating the whole polynomial which would require huge amount of multiplications.

Actually the method presented here uses only a quadratic curve, not cubic. The number of the variables in the adder is N+1, where N is the order of the polynomial to be generated. In this example we have only three, thus second order function. For linear we would have two variables: the current value and the constant adder.

The trickiest part is to set up the adder variables...

Check out forward difference in mathworld for more info.

DSF (super-set of BLIT)

	Author or source: David Lowenfels

	Type: matlab code

	Created: 2003-04-02 23:59:24

notes

Discrete Summation Formula ala Moorer

computes equivalent to sum{k=0:N-1}(a^k * sin(beta + k*theta))
modified from Emanuel Landeholm's C code
output should never clip past [-1,1]

If using for BLIT synthesis for virtual analog:
N = maxN;
a = attn_at_Nyquist ^ (1/maxN); %hide top harmonic popping in and out when sweeping
frequency
beta = pi/2;
num = 1 - a^N * cos(N*theta) - a*(cos(theta) - a^N * cos(N*theta - theta)); %don't waste
time on beta

You can also get growing harmonics if a > 1, but the min statement in the code must be
removed, and the scaling will be weird.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	function output = dsf(freq, a, H, samples, beta)
%a = rolloff coeffecient
%H = number of harmonic overtones (fundamental not included)
%beta = harmonic phase shift

samplerate = 44.1e3;
freq = freq/samplerate; %normalize frequency

bandlimit = samplerate / 2; %Nyquist
maxN = 1 + floor(bandlimit / freq); %prevent aliasing
N = min(H+2,maxN);

theta = 2*pi * phasor(freq, samples);

epsilon = 1e-6;
a = min(a, 1-epsilon); %prevent divide by zero

num = sin(beta) - a*sin(beta-theta) - a^N*sin(beta + N*theta) + a^(N+1)*sin(beta+(N-1)*theta);
den = (1 + a * (a - 2*cos(theta)));

output = 2*(num ./ den - 1) * freq; %subtract by one to remove DC, scale by freq to normalize
output = output * maxN/N; %OPTIONAL: rescale to give louder output as rolloff increases

function out = phasor(normfreq, samples);
out = mod((0:samples-1)*normfreq , 1);
out = out * 2 - 1; %make bipolar

Comments

	Date: 2003-04-03 15:05:42

	By: David Lowenfels

oops, there's an error in this version. frequency should not be normalized until after the maxN calculation is done.

Direct pink noise synthesis with auto-correlated generator

	Author or source: RidgeRat <ten.knilhtrae@6741emmartl>

	Type: 16-bit fixed-point

	Created: 2007-02-11 20:15:42

notes

Canonical C++ class with minimum system dependencies, BUT you must provide your own
uniform random number generator. Accurate range is a little over 9 octaves, degrading
gracefully beyond this. Estimated deviations +-0.25 dB from ideal 1/f curve in range.
Scaled to fit signed 16-bit range.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

	// Pink noise class using the autocorrelated generator method.
// Method proposed and described by Larry Trammell "the RidgeRat" --
// see http://home.earthlink.net/~ltrammell/tech/newpink.htm
// There are no restrictions.
//
// --
//
// This is a canonical, 16-bit fixed-point implementation of the
// generator in 32-bit arithmetic. There are only a few system
// dependencies.
//
// -- access to an allocator 'malloc' for operator new
// -- access to definition of 'size_t'
// -- assumes 32-bit two's complement arithmetic
// -- assumes long int is 32 bits, short int is 16 bits
// -- assumes that signed right shift propagates the sign bit
//
// It needs a separate URand class to provide uniform 16-bit random
// numbers on interval [1,65535]. The assumed class must provide
// methods to query and set the current seed value, establish a
// scrambled initial seed value, and evaluate uniform random values.
//
//
// ----------- header ---
// pinkgen.h

#ifndef _pinkgen_h_
#define _pinkgen_h_ 1

#include <stddef.h>
#include <alloc.h>

// You must provide the uniform random generator class.
#ifndef _URand_h_
#include "URand.h"
#endif

class PinkNoise {
 private:
 // Coefficients (fixed)
 static long int const pA[5];
 static short int const pPSUM[5];

 // Internal pink generator state
 long int contrib[5]; // stage contributions
 long int accum; // combined generators
 void internal_clear();

 // Include a UNoise component
 URand ugen;

 public:
 PinkNoise();
 PinkNoise(PinkNoise &);
 ~PinkNoise();
 void * operator new(size_t);
 void pinkclear();
 short int pinkrand();
} ;
#endif

// ----------- implementation ---------------------------------------
// pinkgen.cpp

#include "pinkgen.h"

// Static class data
long int const PinkNoise::pA[5] =
 { 14055, 12759, 10733, 12273, 15716 };
short int const PinkNoise::pPSUM[5] =
 { 22347, 27917, 29523, 29942, 30007 };

// Clear generator to a zero state.
void PinkNoise::pinkclear()
{
 int i;
 for (i=0; i<5; ++i) { contrib[i]=0L; }
 accum = 0L;
}

// PRIVATE, clear generator and also scramble the internal
// uniform generator seed.
void PinkNoise::internal_clear()
{
 pinkclear();
 ugen.seed(0); // Randomizes the seed!
}

// Constructor. Guarantee that initial state is cleared
// and uniform generator scrambled.
PinkNoise::PinkNoise()
{
 internal_clear();
}

// Copy constructor. Preserve generator state from the source
// object, including the uniform generator seed.
PinkNoise::PinkNoise(PinkNoise & Source)
{
 int i;
 for (i=0; i<5; ++i) contrib[i]=Source.contrib[i];
 accum = Source.accum;
 ugen.seed(Source.ugen.seed());
}

// Operator new. Just fetch required object storage.
void * PinkNoise::operator new(size_t size)
{
 return malloc(size);
}

// Destructor. No special action required.
PinkNoise::~PinkNoise() { /* NIL */ }

// Coding artifact for convenience
#define UPDATE_CONTRIB(n) \
 { \
 accum -= contrib[n]; \
 contrib[n] = (long)randv * pA[n]; \
 accum += contrib[n]; \
 break; \
 }

// Evaluate next randomized 'pink' number with uniform CPU loading.
short int PinkNoise::pinkrand()
{
 short int randu = ugen.urand() & 0x7fff; // U[0,32767]
 short int randv = (short int) ugen.urand(); // U[-32768,32767]

 // Structured block, at most one update is performed
 while (1)
 {
 if (randu < pPSUM[0]) UPDATE_CONTRIB(0);
 if (randu < pPSUM[1]) UPDATE_CONTRIB(1);
 if (randu < pPSUM[2]) UPDATE_CONTRIB(2);
 if (randu < pPSUM[3]) UPDATE_CONTRIB(3);
 if (randu < pPSUM[4]) UPDATE_CONTRIB(4);
 break;
 }
 return (short int) (accum >> 16);
}

// ----------- application -------------------------------

short int pink_signal[1024];

void example(void)
{
 PinkNoise pinkgen;
 int i;
 for (i=0; i<1024; ++i) pink_signal[i] = pinkgen.pinkrand();
}

Discrete Summation Formula (DSF)

	Author or source: Stylson, Smith and others… (Alexander Kritov)

	Created: 2002-02-10 12:43:30

notes

Buzz uses this type of synth.
For cool sounds try to use variable,
for example a=exp(-x/12000)*0.8 // x- num.samples

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	double DSF (double x, // input
 double a, // a<1.0
 double N, // N<SmplFQ/2,
 double fi) // phase
{
 double s1 = pow(a,N-1.0)*sin((N-1.0)*x+fi);
 double s2 = pow(a,N)*sin(N*x+fi);
 double s3 = a*sin(x+fi);
 double s4 =1.0 - (2*a*cos(x)) +(a*a);
 if (s4==0)
 return 0;
 else
 return (sin(fi) - s3 - s2 +s1)/s4;
}

Comments

	Date: 2002-11-08 11:21:19

	By: dfl[AT]ccrma.stanford.edu

According to Stilson + Smith, this should be

double s1 = pow(a,N+1.0)*sin((N-1.0)*x+fi);
 ^
 !

Could be a typo though?

	Date: 2003-03-14 17:01:46

	By: Alex

yepp..

	Date: 2003-03-20 04:20:51

	By: TT

So what is wrong about "double" up there?
For DSF, do we have to update the phase (fi input) at every sample?
Another question is what's the input x supposed to represent? Thanks!

	Date: 2003-04-01 01:45:47

	By: David Lowenfels

input x should be the phase, and fi is the initial phase I guess? Seems redundant to me.
There is nothing wrong with the double, there is a sign typo in the original posting.

	Date: 2007-02-14 18:04:44

	By: moc.erehwon@ydobon

I'm not so sure that there is a sign typo. (I know--I'm five years late to this party.)

The author of this code just seems to have an off-by-one definition of N. If you expand it all out, it looks like Stilson & Smith's paper, except you have N here where S&S had N+1, and you have N-1 where S&S had N.

I think the code is equivalent. You just have to understand how to choose N to avoid aliasing.

I don't have it working yet, but that's how it looks to me as I prepare a DSF oscillator. More later.

	Date: 2008-11-02 11:47:07

	By: mysterious T

Got it working nicely, but it took a few minutes to pluck it apart. Had to correct it for my pitch scheme, too. But it's quite amazing! Funny concept, though, it's like a generator with a built in filter. It holds up into very high pitches, too, in terms of aliasing, as far as I can tell... ehm...and without any further oversampling (so far).

Really, really nice! I was looking for a way to give my sinus an edge! ;)

Drift generator

	Author or source: ti.oohay@odrasotniuq

	Type: Random

	Created: 2004-09-23 16:07:34

notes

I use this drift to modulate any sound parameter of my synth.
It is very effective if it slightly modulates amplitude or frequency of an FM modulator.
It is based on an incremental random variable, sine-warped.
I like it because it is "continuous" (as opposite to "sample and hold"), and I can set
variation rate and max variation.
It can go to upper or lower constraint (+/- max drift) but it gradually decreases rate of
variation when approaching to the limit.
I use it exactly as an LFO (-1.f .. +1.f)
I use a table for sin instead of sin() function because this way I can change random
distribution, by selecting a different curve (different table) from sine...

I hope that it is clear ... (sigh... :-)
Bye!!!
P.S. Thank you for help in previous submission ;-)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	const int kSamples //Number of samples in fSinTable below
float fSinTable[kSamples] // Tabulated sin() [0 - 2pi[amplitude [-1.f .. 1.f]
float fWhere// Index
float fRate // Max rate of variation
float fLimit //max or min value
float fDrift // Output

//I assume that random() is a number from 0.f to 1.f, otherwise scale it

fWhere += fRate * random()
//I update this drift in a long-term cycle, so I don't care of branches
if (fWhere >= 1.f) fWhere -= 1.f
else if (fWhere < 0.f) sWhere += 1.f

fDrift = fLimit * fSinTable[(long) (fWhere * kSamples)]

Comments

	Date: 2004-09-24 17:37:38

	By: ti.oohay@odrasotniuq

...sorry...
random() must be in [-1..+1] !!!

Easy noise generation

	Author or source: moc.psd-nashi@liam

	Type: White Noise

	Created: 2006-02-23 22:40:20

notes

Easy noise generation,
in .hpp,
b_noise = 19.19;

alternatively, the number 19 below can be replaced with a number of your choice, to get
that particular flavour of noise.

Regards,
Ove Karlsen.

code

	1
2
3
4
5
6
7
8

	 b_noise = b_noise * b_noise;
 int i_noise = b_noise;
 b_noise = b_noise - i_noise;

 double b_noiseout;
 b_noiseout = b_noise - 0.5;

 b_noise = b_noise + 19;

Comments

	Date: 2006-07-16 18:24:22

	By: moc.liamg@saoxyz

This is quite a good PRNG! The numbers it generates exhibit a slight a pattern (obviously, since it's not very sophisticated) but they seem quite usable! The real FFT spectrum is very flat and "white" with just one or two aberrant spikes while the imaginary spectrum is almost perfect (as is the case with most PRNGs). Very nice! Either that or I need more practice with MuPad...

	Date: 2007-01-16 12:16:24

	By: moc.liamtoh@neslrakevofira

Alternatively you can do:

 double b_noiselast = b_noise;
 b_noise = b_noise + 19;
 b_noise = b_noise * b_noise;
 b_noise = b_noise + ((-b_noise + b_noiselast) * 0.5);
 int i_noise = b_noise;
 b_noise = b_noise - i_noise;

This will remove the patterning.

	Date: 2007-01-16 16:56:19

	By: moc.erehwon@ydobon

>>b_noise = b_noise + ((-b_noise + b_noiselast) * 0.5);

That seems to reduce to just:

b_noise=(b_noise+b_noiselast) * 0.5;

	Date: 2007-01-18 22:04:19

	By: mymail@com

Hi, is this integer? Please do not disturb the forum, rather send me an email.

B.i.T

	Date: 2007-02-01 16:21:12

	By: moc.liamtoh@neslrakevofira

The line is written like that, so you can change 0.5, to for instance 0.19.

	Date: 2007-02-01 16:52:21

	By: moc.erehwon@ydobon

>>The line is written like that, so you can change 0.5, to for instance 0.19.

OK. Why would I do that? What's that number control?

	Date: 2007-02-03 15:51:46

	By: moc.liamtoh@neslrakevofira

It controls the patterning. I usually write my algorithms tweakable.

You could try even lower aswell, maybe 1e-19.

Fast Exponential Envelope Generator

	Author or source: Christian Schoenebeck

	Created: 2005-03-03 14:44:11

notes

The naive way to implement this would be to use a exp() call for each point
of the envelope. Unfortunately exp() is quite a heavy function for most
CPUs, so here is a numerical, much faster way to compute an exponential
envelope (performance gain measured in benchmark: about factor 100 with a
Intel P4, gcc -O3 --fast-math -march=i686 -mcpu=i686).

Note: you can't use a value of 0.0 for levelEnd. Instead you have to use an
appropriate, very small value (e.g. 0.001 should be sufficiently small
enough).

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	const float sampleRate = 44100;
float coeff;
float currentLevel;

void init(float levelBegin, float levelEnd, float releaseTime) {
 currentLevel = levelBegin;
 coeff = (log(levelEnd) - log(levelBegin)) /
 (releaseTime * sampleRate);
}

inline void calculateEnvelope(int samplePoints) {
 for (int i = 0; i < samplePoints; i++) {
 currentLevel += coeff * currentLevel;
 // do something with 'currentLevel' here
 ...
 }
}

Comments

	Date: 2005-03-03 21:16:41

	By: moc.erawknuhc@knuhcnezitic

is there a typo in the runtime equation? or am i missing something in the implementation?

	Date: 2005-03-04 15:13:56

	By: schoenebeck (@) software (minus) engineering.org

Why should there be a typo?

Here is my benchmark code btw:
http://stud.fh-heilbronn.de/~cschoene/studienarbeit/benchmarks/exp.cpp

	Date: 2005-03-04 16:20:41

	By: moc.erawknuhc@knuhcnezitic

ok, i think i get it. this can only work on blocks of samples, right? not per-sample calc?

i was confused because i could not find the input sample(s) in the runtime code. but now i see that the equation does not take an input; it merely generates a defined envelope accross the number of samples. my bad.

	Date: 2005-03-04 19:16:29

	By: schoenebeck (@) software (minus) engineering.org

Well, the code above is only meant to show the principle. Of course you
would adjust it for your application. The question if you are calculating
on a per-sample basis or applying the envelope to a block of samples
within a tight loop doesn't really matter; it would just mean an
adjustment of the interface of the execution code, which is trivial.

	Date: 2005-03-05 10:26:44

	By: ten.ooleem@ooleem

This is not working for long envelopes because of numerical accury problems. Try calculating is over 10 seconds @ 192KHz to see what I mean: it drifts.
I have an equivalent system that permits to have linear to log and to exp curves with a simple parameter. I may submit it one of these days...

Sebastien Metrot
--
http://www.usbsounds.com

	Date: 2005-03-05 13:48:12

	By: schoenebeck (@) software (minus) engineering.org

No, here is a test app which shows the introduced drift:
http://stud.fh-heilbronn.de/~cschoene/studienarbeit/benchmarks/expaccuracy.cpp

Even with an envelope duration of 30s, which is really quite long, a sample
rate of 192kHz and single-precision floating point calculation I get this
result:

Calculated sample points: 5764846
Demanded duration: 30.000000 s
Actual duration: 30.025240 s

So the envelope just drifts about 25ms for that long envelope!

	Date: 2005-03-09 11:44:31

	By: ten.ooleem@ooleem

I believe you are seeing unrealistic results with this test because on x86 the fpu's internal format is 80bits and your compiler probably optimises this cases quite easily. Try doing the same test, calculating the same envelope, but by breaking the calculation in blocks of 256 or 512 samples at a time and then storing in memory the temp values for the next block. In this case you may see diferent results and a much bigger drift (that's my experience with the same algo).
Anyway my algo is a bit diferent as it permits to change the curent type with a parameter, this makes the formula looks like
value = value * coef + contant;
May be this leads to more calculation errors :).

	Date: 2005-03-09 13:33:43

	By: schoenebeck (@) software (minus) engineering.org

And again... no! :)

Replace the C equation by:

 asm volatile (
 "movss %1,%%xmm0 # load coeff\n\t"
 "movss %2,%%xmm1 # load currentLevel\n\t"
 "mulss %%xmm1,%%xmm0 # coeff *= currentLevel\n\t"
 "addss %%xmm0,%%xmm1 # currentLevel += coeff * currentLevel\n\t"
 "movss %%xmm1,%0 # store currentLevel\n\t"
 : "=m" (currentLevel) /* %0 */
 : "m" (coeff), /* %1 */
 "m" (currentLevel) /* %2 */
);

This is a SSE1 assembly implementation. The SSE registers are only 32 bit
large by guarantee. And this is the result I get:

Calculated sample points: 5764845
Demanded duration: 30.000000 s
Actual duration: 30.025234 s

So this result differs just 1 sample point from the x86 FPU solution! So
believe me, this numerical solution is safe!

(Of course the assembly code above is NOT meant as optimization, it's just
to demonstrate the accuracy even for 32 bit / single precision FP
calculation)

	Date: 2005-03-23 22:42:06

	By: m (at) mindplay (dot) dk

in my tests, the following code produced the exact same results, and saves one operation (the addition) per sample - so it should be faster:

const float sampleRate = 44100;
float coeff;
float currentLevel;

void init(float levelBegin, float levelEnd, float releaseTime) {
 currentLevel = levelBegin;
 coeff = exp(log(levelEnd)) /
 (releaseTime * sampleRate);
}

inline void calculateEnvelope(int samplePoints) {
 for (int i = 0; i < samplePoints; i++) {
 currentLevel *= coeff;
 // do something with 'currentLevel' here
 ...
 }
}

...

Also, assuming that your startLevel is 1.0, to calculate an appropriate endLevel, you can use something like:

endLevel = 10 ^ dB/20;

where dB is your endLevel in decibels (and must be a negative value of course) - for amplitude envelopes, -90 dB should be a suitable level for "near inaudible"...

	Date: 2005-03-31 14:45:51

	By: schoenebeck (@) software (minus) engineering.org

 Sorry, you are right of course; that simplification of the execution
equation works here because we are calculating all points with linear
discretization. But you will agree that your init() function is not good,
because exp(log(x)) == x and it's not generalized at all. Usually you might
have more than one exp segment in your EG and maybe even have an exp attack
segment. So we arrive at the following solution:

const float sampleRate = 44100;
float coeff;
float currentLevel;

void init(float levelBegin, float levelEnd, float releaseTime) {
 currentLevel = levelBegin;
 coeff = 1.0f + (log(levelEnd) - log(levelBegin)) /
 (releaseTime * sampleRate);
}

inline void calculateEnvelope(int samplePoints) {
 for (int i = 0; i < samplePoints; i++) {
 currentLevel *= coeff;
 // do something with 'currentLevel' here
 ...
 }
}

You can use a dB conversion for both startLevel and endLevel of course.

	Date: 2006-03-10 01:53:44

	By: na

i would say that calculation of coeff is still wrong. It should be :
coeff = pow(levelEnd / levelBegin, 1 / N);

	Date: 2006-03-10 02:23:29

	By: na[eldar # starman # ee]

or coeff = exp(log(levelEnd/levelBegin) /
 (releaseTime * sampleRate));
not sure but it looks computationally more expensive

	Date: 2006-11-26 15:44:04

	By: hc.xmg@.i.l.e

what's about?
coeff = 1.0f + (log(levelEnd) - log(levelBegin)) /
 (releaseTime * sampleRate - 1);

	Date: 2006-11-26 15:55:12

	By: hc.xmg@.i.l.e

sorry for the double post. and i'm now almost sure, that it should be:
coeff = 1.0f + (log(levelEnd) - log(levelBegin)) /
 (releaseTime * sampleRate + 1);

Fast LFO in Delphi…

	Author or source: Dambrin Didier (moc.tcerideciffo-e@log)

	Created: 2003-07-15 09:01:18

	Linked files: LFOGenerator.zip.

notes

[from Didier's mail...]
[see attached zip file too!]

I was working on a flanger, & needed an LFO for it. I first used a Sin(), but it was too
slow, then tried a big wavetable, but it wasn't accurate enough.
I then checked the alternate sine generators from your web site, & while they're good,
they all can drift, so you're also wasting too much CPU in branching for the drift checks.
So I made a quick & easy linear LFO, then a sine-like version of it. Can be useful for
LFO's, not to output as sound.
If has no branching & is rather simple. 2 Abs() but apparently they're fast. In all cases
faster than a Sin()
It's in delphi, but if you understand it you can translate it if you want.
It uses a 32bit integer counter that overflows, & a power for the sine output.
If you don't know delphi, $ is for hex (h at the end in c++?), Single is 32bit float,
integer is 32bit integer (signed, normally).

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

	unit Unit1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, ExtCtrls, ComCtrls;

type
 TForm1 = class(TForm)
 PaintBox1: TPaintBox;
 Bevel1: TBevel;
 procedure PaintBox1Paint(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.PaintBox1Paint(Sender: TObject);
var n,Pos,Speed:Integer;
 Output,Scale,HalfScale,PosMul:Single;
 OurSpeed,OurScale:Single;
begin
OurSpeed:=100; // 100 samples per cycle
OurScale:=100; // output in -100..100

Pos:=0; // position in our linear LFO
Speed:=Round($100000000/OurSpeed);

// --- triangle LFO ---
Scale:=OurScale*2;
PosMul:=Scale/$80000000;

// loop
for n:=0 to 299 do
 Begin
 // inc our 32bit integer LFO pos & let it overflow. It will be seen as signed when read by the math unit
 Pos:=Pos+Speed;

 Output:=Abs(Pos*PosMul)-OurScale;

 // visual
 Paintbox1.Canvas.Pixels[n,Round(100+Output)]:=clRed;
 End;

// --- sine-like LFO ---
Scale:=Sqrt(OurScale*4);
PosMul:=Scale/$80000000;
HalfScale:=Scale/2;

// loop
for n:=0 to 299 do
 Begin
 // inc our 32bit integer LFO pos & let it overflow. It will be seen as signed when read by the math unit
 Pos:=Pos+Speed;

 Output:=Abs(Pos*PosMul)-HalfScale;
 Output:=Output*(Scale-Abs(Output));

 // visual
 Paintbox1.Canvas.Pixels[n,Round(100+Output)]:=clBlue;
 End;
end;

end.

Comments

	Date: 2004-04-29 09:18:58

	By: ed.luosfosruoivas@naitsirhC

LFO Class...

unit Unit1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, ExtCtrls, ComCtrls;

type
 TLFOType = (lfoTriangle,lfoSine);
 TLFO = class(TObject)
 private
 iSpeed : Integer;
 fSpeed : Single;
 fMax, fMin : Single;
 fValue : Single;
 fPos : Integer;
 fType : TLFOType;
 fScale : Single;
 fPosMul : Single;
 fHalfScale : Single;
 function GetValue:Single;
 procedure SetType(tt: TLFOType);
 procedure SetMin(v:Single);
 procedure SetMax(v:Single);
 public
 { Public declarations }
 constructor Create;
 published
 property Value:Single read GetValue;
 property Speed:Single read FSpeed Write FSpeed;
 property Min:Single read FMin write SetMin;
 property Max:Single read FMax Write SetMax;
 property LFO:TLFOType read fType Write SetType;
 end;

 TForm1 = class(TForm)
 Bevel1: TBevel;
 PaintBox1: TPaintBox;
 procedure PaintBox1Paint(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

constructor TLFO.Create;
begin
 fSpeed:=100;
 fMax:=1;
 fMin:=0;
 fValue:=0;
 fPos:=0;
 iSpeed:=Round($100000000/fSpeed);
 fType:=lfoTriangle;
 fScale:=fMax-((fMin+fMax)/2);
end;

procedure TLFO.SetType(tt: TLFOType);
begin
 fType:=tt;
 if fType = lfoSine then
 begin
 fPosMul:=(Sqrt(fScale*2))/$80000000;
 fHalfScale:=(Sqrt(fScale*2))/2;
 end
 else
 begin
 fPosMul:=fScale/$80000000;
 end;
end;

procedure TLFO.SetMin(v: Single);
begin
 fMin:=v;
 fScale:=fMax-((fMin+fMax)/2);
end;

procedure TLFO.SetMax(v: Single);
begin
 fMax:=v;
 fScale:=fMax-((fMin+fMax)/2);
end;

function TLFO.GetValue:Single;
begin
 if fType = lfoSine then
 begin
 Result:=Abs(fPos*fPosMul)-fHalfScale;
 Result:=Result*(fHalfScale*2-Abs(Result))*2;
 Result:=Result+((fMin+fMax)/2);
 end
 else
 begin
 Result:=Abs(fPos*(2*fPosMul))+fMin;
 end;
 fPos:=fPos+iSpeed;
end;

procedure TForm1.PaintBox1Paint(Sender: TObject);
var n : Integer;
 LFO1 : TLFO;
begin

LFO1:=TLFO.Create;
LFO1.Min:=-100;
LFO1.Max:=100;
LFO1.Speed:=100;
LFO1.LFO:=lfoTriangle;

// --- triangle LFO ---
for n:=0 to 299 do Paintbox1.Canvas.Pixels[n,Round(100+LFO1.Value)]:=clRed;

LFO1.LFO:=lfoSine;
// --- sine-like LFO ---
for n:=0 to 299 do Paintbox1.Canvas.Pixels[n,Round(100+LFO1.Value)]:=clBlue;
end;

end.

	Date: 2005-06-01 23:36:15

	By: ed.luosfosruoivas@naitsirhC

Ups, i forgot something:

 TLFO = class(TObject)
 private
 ...
 procedure SetSpeed(v:Single);
 public
 ...
 published
 ...
 property Speed:Single read FSpeed Write SetSpeed;
 ...
 end;

...

constructor TLFO.Create;
begin
 ...
 Speed:=100;
 ...
end;

procedure TLFO.SetSpeed(v:Single);
begin
 fSpeed:=v;
 iSpeed:=Round($100000000/fSpeed);
end;

...

Fast SIN approximation for usage in e.g. additive synthesizers

	Author or source: neotec

	Created: 2008-12-09 11:56:33

notes

This code presents 2 'fastsin' functions. fastsin2 is less accurate than fastsin. In fact
it's a simple taylor series, but optimized for integer phase.

phase is in 0 -> (2^32)-1 range and maps to 0 -> ~2PI

I get about 55000000 fastsin's per second on my P4,3.2GHz which would give a nice Kawai K5
emulation using 64 harmonics and 8->16 voices.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	float fastsin(UINT32 phase)
{
 const float frf3 = -1.0f / 6.0f;
 const float frf5 = 1.0f / 120.0f;
 const float frf7 = -1.0f / 5040.0f;
 const float frf9 = 1.0f / 362880.0f;
 const float f0pi5 = 1.570796327f;
 float x, x2, asin;
 UINT32 tmp = 0x3f800000 | (phase >> 7);
 if (phase & 0x40000000)
 tmp ^= 0x007fffff;
 x = (*((float*)&tmp) - 1.0f) * f0pi5;
 x2 = x * x;
 asin = ((((frf9 * x2 + frf7) * x2 + frf5) * x2 + frf3) * x2 + 1.0f) * x;
 return (phase & 0x80000000) ? -asin : asin;
}

float fastsin2(UINT32 phase)
{
 const float frf3 = -1.0f / 6.0f;
 const float frf5 = 1.0f / 120.0f;
 const float frf7 = -1.0f / 5040.0f;
 const float f0pi5 = 1.570796327f;
 float x, x2, asin;
 UINT32 tmp = 0x3f800000 | (phase >> 7);
 if (phase & 0x40000000)
 tmp ^= 0x007fffff;
 x = (*((float*)&tmp) - 1.0f) * f0pi5;
 x2 = x * x;
 asin = (((frf7 * x2 + frf5) * x2 + frf3) * x2 + 1.0f) * x;
 return (phase & 0x80000000) ? -asin : asin;
}

Comments

	Date: 2008-12-09 12:11:11

	By: neotec

PS: To use this as an OSC you'll need the following vars/equ's:

UINT32 phase = 0;
UINT32 step = frequency * powf(2.0f, 32.0f) / samplerate;

Then it's just:
...
out = fastsin(phase);
phase += step;
...

	Date: 2008-12-14 20:04:10

	By: moc.toohay@bob

Woah! Seven multiplies, on top of those adds and memory lookup. Is this really all that fast?

Fast Whitenoise Generator

	Author or source: ed.bew@hcrikdlef.dreg

	Type: Whitenoise

	Created: 2006-02-23 22:39:56

notes

This is Whitenoise... :o)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	float g_fScale = 2.0f / 0xffffffff;
int g_x1 = 0x67452301;
int g_x2 = 0xefcdab89;

void whitenoise(
 float* _fpDstBuffer, // Pointer to buffer
 unsigned int _uiBufferSize, // Size of buffer
 float _fLevel) // Noiselevel (0.0 ... 1.0)
{
 _fLevel *= g_fScale;

 while(_uiBufferSize--)
 {
 g_x1 ^= g_x2;
 *_fpDstBuffer++ = g_x2 * _fLevel;
 g_x2 += g_x1;
 }
}

Comments

	Date: 2006-07-18 17:34:00

	By: uh.etle.fni@yfoocs

Works well! Kinda fast! The spectrum looks completely flat in an FFT analyzer.

	Date: 2006-11-29 20:50:44

	By: ed.bew@hcrikdlef.dreg

As I said! :-)
Take care

	Date: 2006-11-30 00:57:31

	By: moc.erehwon@ydobon

I'm now waiting for pink and brown. :-)

	Date: 2006-11-30 15:02:54

	By: uh.etle.fni@yfoocs

To get pink noise, you can apply a 3dB/Oct filter, for example the pink noise filter in the Filters section.

To get brown noise, apply an one pole LP filter to get a 6dB/oct slope.

Peter

	Date: 2006-11-30 17:55:02

	By: moc.erehwon@ydobon

Yeah, I know how to do it with a filter. I was just looking to see if this guy had anything else clever up his sleeve.

I'm currently using this great stuff:

vellocet.com/dsp/noise/VRand.html

	Date: 2006-12-15 17:12:19

	By: moc.liamg@palbmert

I compiled it, but I get some grainyness that a unisgned long LC algorithm does not give me... am I the only one?

pa

	Date: 2006-12-17 18:12:42

	By: uh.etle.fni@yfoocs

Did you do everything right? It works here.

	Date: 2006-12-19 21:24:04

	By: ed.bew@hcrikdlef.dreg

I've noticed that my code is similar to a so called "feedback shift register" as used in the Commodore C64 Soundchip 6581 called SID for noise generation.

Links:
en.wikipedia.org/wiki/Linear_feedback_shift_register
en.wikipedia.org/wiki/MOS_Technology_SID
www.cc65.org/mailarchive/2003-06/3156.html

	Date: 2007-03-13 00:39:39

	By: —.liam@firA

SID noise! cool.

	Date: 2021-06-25 11:43:00

	By: TaleTN

I still seem to run into this noise generator from time to time, so I thought I'd provide some extra info here:

The seed provided above will result in a sequence with a period of 3/4 * 2^29, and with 268876131 unique output values in the [-2147483635, 2147483642] range. This is probably more than enough to generate white noise at any reasonable sample rate, but you can easily increase/max out the period and range, simply by using different seed values.

If you instead use g_x1 = 0x70f4f854 and g_x2 = 0xe1e9f0a7, then this will result in a sequence with a period of 3/4 * 2^32, with 1896933636 unique output values in the [-2147483647, 2147483647] range. This is probably the best you can do with a word size of 32 bits. Also note that only the highest bit will actually have the max period, lower bits will have increasingly shorter periods (just like with a Linear Congruential Generator).

Fast sine and cosine calculation

	Author or source: Lot’s or references… Check Julius O. SMith mainly

	Type: waveform generation

	Created: 2002-01-17 00:54:32

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	init:
float a = 2.f*(float)sin(Pi*frequency/samplerate);

float s[2];

s[0] = 0.5f;
s[1] = 0.f;

loop:
s[0] = s[0] - a*s[1];
s[1] = s[1] + a*s[0];
output_sine = s[0];
output_cosine = s[1]

Comments

	Date: 2003-04-05 10:52:49

	By: DFL

Yeah, this is a cool trick! :)

FYI you can set s[0] to whatever amplitude of sinewave you desire. With 0.5, you will get +/- 0.5

	Date: 2003-04-05 17:02:22

	By: gro.tucetontsap@kcitgib

After a while it may drift, so you should resync it as follows:
const float tmp=1.5f-0.5f*(s[1]*s[1]+s[0]*s[0]);
s[0]*=tmp; s[1]*=tmp;

This assumes you set s[0] to 1.0 initially.

'Tick

	Date: 2003-04-08 09:19:40

	By: DFL

Just to expalin the above "resync" equation
(3-x)/2 is an approximation of 1/sqrt(x)
So the above is actually renormalizing the complex magnitude.
[sin^2 (x) + cos^2(x) = 1]

	Date: 2003-05-15 08:26:22

	By: nigel

This is the Chamberlin state variable filter specialized for infinite Q oscillation. A few things to note:

Like the state variable filter, the upper frequency limit for stability is around one-sixth the sample rate.

The waveform symmetry is very pure at low frequencies, but gets skewed as you get near the upper limit.

For low frequencies, sin(n) is very close to n, so the calculation for "a" can be reduced to a = 2*Pi*frequency/samplerate.

You shouldn't need to resync the oscillator--for fixed point and IEEE floating point, errors cancel exactly, so the osciallator runs forever without drifting in amplitude or frequency.

	Date: 2003-11-03 00:14:34

	By: moc.liamtoh@sisehtnysorpitna

I made a nice little console 'game' using your cordic sinewave approximation. Download it at http://users.pandora.be/antipro/Other/Ascillator.zip (includes source code). Just for oldschool fun :).

	Date: 2004-12-22 16:52:20

	By: hplus

Note that the peaks of the waveforms will actually be between samples, and the functions will be phase offset by one half sample's worth. If you need exact phase, you can compensate by interpolating using cubic hermite interpolation.

	Date: 2007-07-24 20:33:12

	By: more on that topic…

... can be found in Jon Datorro, Effect Design, Part 3, a paper that can be easily found in the web.

Funny, this is just a complex multiply that is optimized for small angles (low frequencies)

When the CPU rounding mode is set to nearest, it should be stable, at least for small frequencies.

	Date: 2007-07-24 20:34:22

	By: ed.corm@liam

More on that can be found in Jon Datorro, Effect Design, Part 3, a paper that can be easily found in the web.

Funny, this is just a complex multiply that is optimized for small angles (low frequencies)

When the CPU rounding mode is set to nearest, it should be stable, at least for small frequencies.

	Date: 2008-09-21 20:16:40

	By: moc.foohay@bob

How do I set a particular phase for this? I've tried setting s[0] = cos(phase) and s[1] = sin(phase), but that didn't seem to be accurate enough.

Thanks

Fast sine wave calculation

	Author or source: James McCartney in Computer Music Journal, also the Julius O. Smith paper

	Type: waveform generation

	Created: 2002-01-17 00:52:33

notes

(posted by Niels Gorisse)
If you change the frequency, the amplitude rises (pitch lower) or lowers (pitch rise) a
LOT I fixed the first problem by thinking about what actually goes wrong. The answer was
to recalculate the phase for that frequency and the last value, and then continue
normally.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	Variables:
ip = phase of the first output sample in radians
w = freq*pi / samplerate
b1 = 2.0 * cos(w)

Init:
y1=sin(ip-w)
y2=sin(ip-2*w)

Loop:
y0 = b1*y1 - y2
y2 = y1
y1 = y0

output is in y0 (y0 = sin(ip + n*freq*pi / samplerate), n= 0, 1, 2, ... I *think*)

Later note by James McCartney:
if you unroll such a loop by 3 you can even eliminate the assigns!!

y0 = b1*y1 - y2
y2 = b1*y0 - y1
y1 = b1*y2 - y0

Comments

	Date: 2003-04-22 15:05:21

	By: moc.liamtoh@trahniak

try using this to make sine waves with frequency less that 1. I did and it gives very rough half triangle-like waves. Is there any way to fix this? I want to use a sine generated for LFO so I need one that works for low frequencies.

	Date: 2006-10-24 22:34:59

	By: moc.oi@htnysa

looks like the formula has gotten munged.
w = freq * twopi / samplerate

Fast square wave generator

	Author or source: Wolfgang (ed.tfoxen@redienhcsw)

	Type: NON-bandlimited osc…

	Created: 2002-02-10 12:46:22

notes

Produces a square wave -1.0f .. +1.0f.
The resulting waveform is NOT band-limited, so it's propably of not much use for syntheis.
It's rather useful for LFOs and the like, though.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	Idea: use integer overflow to avoid conditional jumps.

// init:
typedef unsigned long ui32;

float sampleRate = 44100.0f; // whatever
float freq = 440.0f; // 440 Hz
float one = 1.0f;
ui32 intOver = 0L;
ui32 intIncr = (ui32)(4294967296.0 / hostSampleRate / freq));

// loop:
(*((ui32 *)&one)) &= 0x7FFFFFFF; // mask out sign bit
(*((ui32 *)&one)) |= (intOver & 0x80000000);
intOver += intIncr;

Comments

	Date: 2003-08-03 01:35:08

	By: moc.jecnal@psdcisum

So, how would I get the output into a float variable like square_out, for instance?

	Date: 2009-04-12 15:33:37

	By: moc.liamtoh@18_ogag_leafar

In response to lancej, yo can declare a union with a float and a int and operate the floatas as here using the int part of the union.

If I remeber correctly the value for -1.f = 0xBF800000 and the value for 1.f = 0x3F800000, note the 0x80000000 difference between them that is the sign.

Gaussian White Noise

	Author or source: uh.atsopten@egamer

	Created: 2002-08-07 16:23:28

notes

SOURCE:

Steven W. Smith:
The Scientist and Engineer's Guide to Digital Signal Processing
http://www.dspguide.com

code

	1
2
3
4
5
6

	#define PI 3.1415926536f

float R1 = (float) rand() / (float) RAND_MAX;
float R2 = (float) rand() / (float) RAND_MAX;

float X = (float) sqrt(-2.0f * log(R1)) * cos(2.0f * PI * R2);

Comments

	Date: 2002-08-28 02:05:50

	By: gro.sdikgninnips@nap

The previous one seems better for me, since it requires only a rand, half log and half sqrt per sample.
Actually, I used that one, but I can't remember where I found it, too. Maybe on Knuth's book.

Gaussian White noise

	Author or source: Alexey Menshikov

	Created: 2002-08-01 01:13:47

notes

Code I use sometimes, but don't remember where I ripped it from.

 - Alexey Menshikov

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	#define ranf() ((float) rand() / (float) RAND_MAX)

float ranfGauss (int m, float s)
{
 static int pass = 0;
 static float y2;
 float x1, x2, w, y1;

 if (pass)
 {
 y1 = y2;
 } else {
 do {
 x1 = 2.0f * ranf () - 1.0f;
 x2 = 2.0f * ranf () - 1.0f;
 w = x1 * x1 + x2 * x2;
 } while (w >= 1.0f);

 w = (float)sqrt (-2.0 * log (w) / w);
 y1 = x1 * w;
 y2 = x2 * w;
 }
 pass = !pass;

 return ((y1 * s + (float) m));
}

Comments

	Date: 2004-01-29 15:41:35

	By: davidchristenATgmxDOTnet

White Noise does !not! consist of uniformly distributed values. Because in white noise, the power of the frequencies are uniformly distributed. The values must be normal (or gaussian) distributed. This is achieved by the Box-Muller Transformation. This function is the polar form of the Box-Muller Transformation. It is faster and numeriacally more stable than the basic form. The basic form is coded in the other (second) post.
Detailed information on this topic:
http://www.taygeta.com/random/gaussian.html
http://www.eece.unm.edu/faculty/bsanthan/EECE-541/white2.pdf

Cheers David

	Date: 2007-09-06 04:09:52

	By: moc.dlrownepotb@wahs.a.kcin

I'm trying to implement this in C#, but y2 isn't initialized. Is this a typo?

	Date: 2010-07-17 20:35:18

	By: ed.rab@oof

@nick: Way to late, but y2 will always be initialized as in the first run "pass" is 0 (i.e. false). The C# compiler just can't prove it.

	Date: 2011-09-03 20:43:59

	By: moc.liamg@htnysa

David is wrong. The distribution of the sample values is irrelevant. 'white' simply describes the spectrum. Any series of sequentially independent random values -- whatever their distribution -- will have a white spectrum.

Generator

	Author or source: Paul Sernine

	Type: antialiased sawtooth

	Created: 2006-02-23 22:38:56

notes

This code generates a swept antialiasing sawtooth in a raw 16bit pcm file.
It is based on the quad differentiation of a 5th order polynomial. The polynomial
harmonics (and aliased harmonics) decay at 5*6 dB per oct. The differenciators correct the
spectrum and waveform, while aliased harmonics are still attenuated.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	/* clair.c Examen Partiel 2b
 T.Rochebois
 02/03/98
*/
#include <stdio.h>
#include <math.h>
main()
{
 double phase=0,dphase,freq,compensation;
 double aw0=0,aw1=0,ax0=0,ax1=0,ay0=0,ay1=0,az0=0,az1=0,sortie;
 short aout;
 int sr=44100; //sample rate (Hz)
 double f_debut=55.0;//start freq (Hz)
 double f_fin=sr/6.0;//end freq (Hz)
 double octaves=log(f_fin/f_debut)/log(2.0);
 double duree=50.0; //duration (s)
 int i;
 FILE* f;
 f=fopen("saw.pcm","wb");
 for(i=0;i<duree*sr;i++)
 {
 //exponential frequency sweep
 //Can be replaced by anything you like.
 freq=f_debut*pow(2.0,octaves*i/(duree*sr));
 dphase=freq*(2.0/sr); //normalised phase increment
 phase+=dphase; //phase incrementation
 if(phase>1.0) phase-=2.0; //phase wrapping (-1,+1)

 //polynomial calculation (extensive continuity at -1 +1)
 // 7 1 3 1 5
 //P(x) = --- x - -- x + --- x
 // 360 36 120
 aw0=phase*(7.0/360.0 + phase*phase*(-1/36.0 + phase*phase*(1/120.0)));
 // quad differentiation (first order high pass filters)
 ax0=aw1-aw0; ay0=ax1-ax0; az0=ay1-ay0; sortie=az1-az0;
 //compensation of the attenuation of the quad differentiator
 //this can be calculated at "control rate" and linearly
 //interpolated at sample rate.
 compensation=1.0/(dphase*dphase*dphase*dphase);
 // compensation and output
 aout=(short)(15000.0*compensation*sortie);
 fwrite(&aout,1,2,f);
 //old memories of differentiators
 aw1=aw0; ax1=ax0; ay1=ay0; az1=az0;
 }
 fclose(f);
}

Comments

	Date: 2006-03-14 09:02:47

	By: rf.liamtoh@57eninreS_luaP

More infos and discussions in the KVR thread:
http://www.kvraudio.com/forum/viewtopic.php?t=123498

	Date: 2006-05-05 17:09:03

	By: moc.asile@nobnob

nice but i prefer the fishy algo, it generates less alias.
bonaveture rosignol

Inverted parabolic envelope

	Author or source: James McCartney

	Type: envellope generation

	Created: 2002-01-17 00:57:43

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	dur = duration in samples
midlevel = amplitude at midpoint
beglevel = beginning and ending level (typically zero)

amp = midlevel - beglevel;

rdur = 1.0 / dur;
rdur2 = rdur * rdur;

level = beglevel;
slope = 4.0 * amp * (rdur - rdur2);
curve = -8.0 * amp * rdur2;

...

for (i=0; i<dur; ++i) {
 level += slope;
 slope += curve;
}

Comments

	Date: 2002-04-11 17:20:10

	By: ti.orebil@erognekark

This parabola approximation seems more like a linear than a parab/expo envelope... or i'm mistaking something but i tryed everything and is only linear.

	Date: 2002-04-13 23:51:49

	By: moc.liamtoh@r0x0r0xe

slope is linear, but 'slope' is a function of 'curve'. If you imagine you threw a ball upwards, think of 'curve' as the gravity, 'slope' as the vertical velocity, and 'level' as the vertical displacement.

	Date: 2005-01-17 07:39:28

	By: asynth(at)io(dot)com

This is not an approximation of a parabola, it IS a parabola.
This entry has become corrupted since it was first posted. Should be:

for (i=0; i<dur; ++i) {
 out = level;
 level += slope;
 slope += curve;
}

Matlab/octave code for minblep table generation

	Author or source: ude.drofnats.amrcc@lfd

	Created: 2005-11-15 22:27:53

notes

When I tested this code, it was running with each function in a separate file... so it
might need some tweaking (endfunction statements?) if you try and run it all as one file.

Enjoy!

PS There's a C++ version by Daniel Werner here.
http://www.experimentalscene.com/?type=2&id=1
Not sure if it the output is any different than my version.
(eg no thresholding in minphase calculation)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

	% Octave/Matlab code to generate a minblep table for bandlimited synthesis
%% original minblep technique described by Eli Brandt:
%% http://www.cs.cmu.edu/~eli/L/icmc01/hardsync.html

% (c) David Lowenfels 2004
% you may use this code freely to generate your tables,
% but please send me a free copy of the software that you
% make with it, or at least send me an email to say hello
% and put my name in the software credits :)
% (IIRC: mps and clipdb functions are from Julius Smith)

% usage:
% fc = dilation factor
% Nzc = number of zero crossings
% omega = oversampling factor
% thresh = dB threshold for minimum phase calc

mbtable = minblep(fc, Nzc, omega, thresh);
mblen = length(mbtable);
save -binary mbtable.mat mbtable ktable nzc mblen;

function [out] = minblep(fc, Nzc, omega, thresh)

out = filter(1, [1 -1], minblip(fc, Nzc, omega, thresh));

len = length(out);
normal = mean(out(floor(len*0.7):len))
out = out / normal; %% normalize

%% now truncate so it ends at proper phase cycle for minimum discontinuity
thresh = 1e-6;
for i = len:-1:len-1000
% pause
 a = out(i) - thresh - 1;
 b = out(i-1) - thresh - 1;
% i
 if((abs(a) < thresh) & (a > b))
 break;
 endif
endfor

%out = out';
out = out(1:i);

function [out] = minblip(fc, Nzc, omega, thresh)
if (nargin < 4)
 thresh = -100;
end
if (nargin < 3)
 omega = 64;
end
if (nargin < 2)
 Nzc = 16;
end
if (nargin < 1)
 fc = 0.9;
end

blip = sinctable(omega, Nzc, fc);
%% length(blip) must be nextpow2! (if fc < 1);

mag = fft(blip);
out = real(ifft(mps(mag, thresh)));

function [sm] = mps(s, thresh)
% [sm] = mps(s)
% create minimum-phase spectrum sm from complex spectrum s

if (nargin < 2)
 thresh = -100;
endif

s = clipdb(s, thresh);
sm = exp(fft(fold(ifft(log(s)))));

function [clipped] = clipdb(s,cutoff)
% [clipped] = clipdb(s,cutoff)
% Clip magnitude of s at its maximum + cutoff in dB.
% Example: clip(s,-100) makes sure the minimum magnitude
% of s is not more than 100dB below its maximum magnitude.
% If s is zero, nothing is done.

as = abs(s);
mas = max(as(:));
if mas==0, return; end
if cutoff >= 0, return; end
thresh = mas*10^(cutoff/20); % db to linear
toosmall = find(as < thresh);
clipped = s;
clipped(toosmall) = thresh;

function [out, phase] = sinctable(omega, Nzc, fc)

if (nargin < 3)
 fc = 1.0 %% cutoff frequency
end %if
if (nargin < 2)
 Nzc = 16 %% number of zero crossings
end %if
if (nargin < 1)
 omega = 64 %% oversampling factor
end %if

Nzc = Nzc / fc %% This ensures more flatness at the ends.

phase = linspace(-Nzc, Nzc, Nzc*omega*2);

%sinc = sin(pi * fc * phase) ./ (pi * fc * phase);

num = sin(pi*fc*phase);
den = pi*fc*phase;

len = length(phase);
sinc = zeros(len, 1);

%sinc = num ./ den;

for i=1:len
 if (den(i) ~= 0)
 sinc(i) = num(i) / den(i);
 else
 sinc(i) = 1;
 end
end %for

out = sinc;
window = blackman(len);
out = out .* window;

PADsynth synthesys method

	Author or source: moc.oohay@xfbusddanyz

	Type: wavetable generation

	Created: 2005-11-15 22:29:01

notes

Please see the full description of the algorithm with public domain c++ code here:
http://zynaddsubfx.sourceforge.net/doc/PADsynth/PADsynth.htm

code

	1
2
3
4

	It's here:
http://zynaddsubfx.sourceforge.net/doc/PADsynth/PADsynth.htm
You may copy it (everything is public domain).
Paul

Comments

	Date: 2005-11-23 15:49:26

	By: moc.yddaht@yddaht

Impressed at first hearing! Well documented.

	Date: 2005-11-25 08:18:58

	By: moc.yticliam@qe.n

1. Isn't this plain additive synthesis
2. Isn't this the algorithm used by the waldorf microwave synths?

	Date: 2005-11-30 09:48:02

	By: mok.00hay@em

1. Nope. This is not a plain additive synthesis. It's a special kind :-P Read the doc again :)
2. No way.. this is NOT even close to waldord microwave synths. Google for this :)

PRNG for non-uniformly distributed values from trigonometric identity

	Author or source: moc.liamg@321tiloen

	Type: pseudo-random number generator

	Created: 2009-09-02 07:16:14

notes

a method, which generates random numbers in the [-1,+1] range, while having a probability
density function with less concentration of values near zero for sin().
you can use an approximation of sin() and/or experiment with such an equation for
different distributions. using tan() will accordingly invert the pdf graph i.e. more
concentration near zero, but the output range will be also affected.

extended read on similar methods:
http://www.stat.wisc.edu/~larget/math496/random2.html

regards
lubomir

code

	1
2
3
4
5

	//init
x=y=1;

//sampleloop
y=sin((x+=1)*y);

Parabolic shaper

	Author or source: rf.eerf@aipotreza

	Created: 2008-03-13 10:41:18

notes

This function can be used for oscillators or shaper.
it can be driven by a phase accumulator or an audio input.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	Function Parashape(inp:single):single;
var fgh,tgh:single;
begin
fgh := inp ;
fgh := 0.25-f_abs(fgh) ;
tgh := fgh ;
tgh := 1-2*f_abs(tgh);
fgh := fgh*8;
result := fgh*tgh ;
end;
// f_abs is the function of ddsputils unit.

Phase modulation Vs. Frequency modulation

	Author or source: Bram

	Created: 2002-08-05 15:31:25

	Linked files: SimpleOscillator.h.

notes

This code shows what the difference is betwee FM and PM.
The code is NOT optimised, nor should it be used like this.
It is an EXAMPLE

See linked file.

Phase modulation Vs. Frequency modulation II

	Author or source: James McCartney

	Created: 2003-12-01 08:24:26

notes

The difference between FM & PM in a digital oscillator is that FM is added to the
frequency before the phase integration, while PM is added to the phase after the phase
integration. Phase integration is when the old phase for the oscillator is added to the
current frequency (in radians per sample) to get the new phase for the oscillator. The
equivalent PM modulator to obtain the same waveform as FM is the integral of the FM
modulator. Since the integral of sine waves are inverted cosine waves this is no problem.
In modulators with multiple partials, the equivalent PM modulator will have different
relative partial amplitudes. For example, the integral of a square wave is a triangle
wave; they have the same harmonic content, but the relative partial amplitudes are
different. These differences make no difference since we are not trying to exactly
recreate FM, but real (or nonreal) instruments.

The reason PM is better is because in PM and FM there can be non-zero energy produced at 0
Hz, which in FM will produce a shift in pitch if the FM wave is used again as a modulator,
however in PM the DC component will only produce a phase shift. Another reason PM is
better is that the modulation index (which determines the number of sidebands produced and
which in normal FM is calculated as the modulator amplitude divided by frequency of
modulator) is not dependant on the frequency of the modulator, it is always equal to the
amplitude of the modulator in radians. The benefit of solving the DC frequency shift
problem, is that cascaded carrier-modulator pairs and feedback modulation are possible.
The simpler calculation of modulation index makes it easier to have voices keep the same
harmonic structure throughout all pitches.

The basic mathematics of phase modulation are available in any text on electronic
communication theory.

Below is some C code for a digital oscillator that implements FM,PM,and AM. It illustrates
the difference in implementation of FM & PM. It is only meant as an example, and not as an
efficient implementation.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	/* Example implementation of digital oscillator with FM, PM, & AM */

#define PI 3.14159265358979
#define RADIANS_TO_INDEX (512.0 / (2.0 * PI))

typedef struct{ /* oscillator data */
 double freq; /* oscillator frequency in radians per sample */
 double phase; /* accumulated oscillator phase in radians */
 double wavetable[512]; /* waveform lookup table */
} OscilRec;

/* oscil - compute 1 sample of oscillator output whose freq. phase and
* wavetable are in the OscilRec structure pointed to by orec.
*/
double oscil(orec, fm, pm, am)
 OscilRec *orec; /* pointer to the oscil's data */
 double fm; /* frequency modulation input in radians per sample */
 double pm; /* phase modulation input in radians */
 double am; /* amplitude modulation input in any units you want */
{
 long tableindex; /* index into wavetable */
 double instantaneous_freq; /* oscillator freq + freq modulation */
 double instantaneous_phase; /* oscillator phase + phase modulation */
 double output; /* oscillator output */

 instantaneous_freq = orec->freq + fm; /* get instantaneous freq */
 orec->phase += instantaneous_freq; /* accumulate phase */
 instantaneous_phase = orec->phase + pm; /* get instantaneous phase */

 /* convert to lookup table index */
 tableindex = RADIANS_TO_INDEX * instantaneous_phase;
 tableindex &= 511; /* make it mod 512 === eliminate multiples of 2*k*PI */

 output = orec->wavetable[tableindex] * am; /* lookup and mult by am input */

 return (output); /* return oscillator output */
}

Comments

	Date: 2011-03-08 11:29:32

	By: ed.redienhcsslin@mapsvulipsdcisum

As the PM/FM is "iterative", won't this code produce different results at different sampling rates? How can this be prevented?

Any advice is highly appreciated!

Pseudo-Random generator

	Author or source: Hal Chamberlain, “Musical Applications of Microprocessors” (Phil Burk)

	Type: Linear Congruential, 32bit

	Created: 2002-01-17 03:11:50

notes

This can be used to generate random numeric sequences or to synthesise a white noise audio
signal.
If you only use some of the bits, use the most significant bits by shifting right.
Do not just mask off the low bits.

code

	1
2
3
4
5
6
7
8

	/* Calculate pseudo-random 32 bit number based on linear congruential method. */
unsigned long GenerateRandomNumber(void)
{
 /* Change this for different random sequences. */
 static unsigned long randSeed = 22222;
 randSeed = (randSeed * 196314165) + 907633515;
 return randSeed;
}

PulseQuad

	Author or source: moc.ellehcim-erdna@ma

	Type: Waveform

	Created: 2007-01-08 10:50:55

notes

This is written in Actionscript 3.0 (Flash9). You can listen to the example at
http://lab.andre-michelle.com/playing-with-pulse-harmonics
It allows to morph between a sinus like quadratic function and an ordinary pulse width
with adjustable pulse width. Note that the slope while morphing is always zero at the edge
points of the waveform. It is not just distorsion.

code

	1

	http://lab.andre-michelle.com/swf/f9/pulsequad/PulseQuad.as

Pulsewidth modulation

	Author or source: Steffan Diedrichsen

	Type: waveform generation

	Created: 2002-01-15 21:29:52

notes

Take an upramping sawtooth and its inverse, a downramping sawtooth. Adding these two waves
with a well defined delay between 0 and period (1/f)
results in a square wave with a duty cycle ranging from 0 to 100%.

Quick & Dirty Sine

	Author or source: MisterToast

	Type: Sine Wave Synthesis

	Created: 2007-01-08 10:50:10

notes

This is proof of concept only (but code works--I have it in my synth now).

Note that x must come in as 0<x<=4096. If you want to scale it to something else (like
0<x<=2*M_PI), do it in the call. Or do the math to scale the constants properly.

There's not much noise in here. A few little peaks here and there. When the signal is at
-20dB, the worst noise is at around -90dB.

For speed, you can go all floats without much difference. You can get rid of that unitary
negate pretty easily, as well. A couple other tricks can speed it up further--I went for
clarity in the code.

The result comes out a bit shy of the range -1<x<1. That is, the peak is something like
0.999.

Where did this come from? I'm experimenting with getting rid of my waveform tables, which
require huge amounts of memory. Once I had the Hamming anti-ringing code in, it looked
like all my waveforms were smooth enough to approximate with curves. So I started with
sine. Pulled my table data into Excel and then threw the data into a curve-fitting
application.

This would be fine for a synth. The noise is low enough that you could easily get away
with it. Ideal for a low-memory situation. My final code will be a bit harder to
understand, as I'll break the curve up and curve-fit smaller sections.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	float xSin(double x)
{
 //x is scaled 0<=x<4096
 const double A=-0.015959964859;
 const double B=217.68468676;
 const double C=0.000028716332164;
 const double D=-0.0030591066066;
 const double E=-7.3316892871734489e-005;
 double y;

 bool negate=false;
 if (x>2048)
 {
 negate=true;
 x-=2048;
 }
 if (x>1024)
 x=2048-x;
 if (negate)
 y=-((A+x)/(B+C*x*x)+D*x-E);
 else
 y=(A+x)/(B+C*x*x)+D*x-E;
 return (float)y;
}

Comments

	Date: 2007-01-08 18:39:26

	By: moc.dniftnacuoyerehwemos@tsaot

Improved version:

float xSin(double x)
{
 //x is scaled 0<=x<4096
 const double A=-0.40319426317E-08;
 const double B=0.21683205691E+03;
 const double C=0.28463350538E-04;
 const double D=-0.30774648337E-02;
 double y;

 bool negate=false;
 if (x>2048)
 {
 negate=true;
 x-=2048;
 }
 if (x>1024)
 x=2048-x;
 y=(A+x)/(B+C*x*x)+D*x;
 if (negate)
 return (float)(-y);
 else
 return (float)y;
}

	Date: 2007-04-15 23:54:56

	By: ten.zo@1otniped

%This is Matlab code. you can convert it to C
%All it take to make a high quality sine
%wave is 1 multiply and one subtract.
%You first have to initialize the 2 unit delays
% and the coefficient

Fs = 48000; %Sample rate
oscfreq = 1000.0; %Oscillator frequency in Hz
c1 = 2 * cos(2 * pi * oscfreq / Fs);
%Initialize the unit delays
d1 = sin(2 * pi * oscfreq / Fs);
d2 = 0;
%Initialization done here is the oscillator loop
% which generates a sinewave
for j=1:100
 output = d1; %This is the sine value
 fprintf(1, '%f\n', output);
 %one multiply and one subtract is all it takes
 d0 = d1 * c1 - d2;
 d2 = d1; %Shift the unit delays
 d1 = d0;
end

	Date: 2008-02-09 20:54:10

	By: moc.liamg@iratuusala.osuuj

Hi,

Can I use this code in a GPL2 or GPL3 licensed program (a soft synth project called Snarl)? In other words, will you grant permission for me to re-license your code? And what name should I write down as copyright holder in the headers?

Thanks,
Juuso Alasuutari

	Date: 2009-06-23 03:12:13

	By: by moc.dniftnacuoyerehwemos@tsaot

Juuso,

Absolutely!

Toast

Quick and dirty sine generator

	Author or source: moc.liamtoh@tsvreiruoc

	Type: sine generator

	Created: 2004-01-06 19:57:44

notes

this is part of my library, although I've seen a lot of sine generators, I've never seen
the simplest one, so I try to do it,
tell me something, I've try it and work so tell me something about it

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	PSPsample PSPsin1::doOsc(int numCh)
{

 double x=0;
 double t=0;

 if(m_time[numCh]>m_sampleRate) //re-init cycle
 m_time[numCh]=0;

 if(m_time[numCh]>0)
 {
 t =(double)(((double)m_time[numCh])/(double)m_sampleRate);

 x=(m_2PI *(double)(t)*m_freq);
 }
 else
 x=0;

 PSPsample r=(PSPsample) sin(x+m_phase)*m_amp;

 m_time[numCh]++;

 return r;

}

Comments

	Date: 2004-01-08 13:51:26

	By: moc.sulp.52retsinnab@etep

isn't the sin() function a little bit heavyweight? Since this is based upon slices of time, would it not be much more processor efficient to use a state variable filter that is self oscillating?

The operation:
t =(double)(((double)m_time[numCh])/(double)m_sampleRate);

also seems a little bit much, since t could be calculated by adding an interval value, which would eliminate the divide (needs more clocks). The divide would then only need to be done once.
An FDIV may take 39 clock cycles minimum(depending on the operands), whilst an FADD is far faster (3 clocks). An FMUL is comparable to an add, which would be a predominant instruction if using the SVF method.

FSIN may take between 16-126 clock cylces.

(clock cycle info nabbed from: http://www.singlix.com/trdos/pentium.txt)

	Date: 2004-01-09 21:19:37

	By: moc.hclumoidua@bssor

See also the fun with sinusoids page:
http://www.audiomulch.com/~rossb/code/sinusoids/

	Date: 2014-11-18 07:37:27

	By: moc.oohay@trawets.tna

For audio generation, sines are expensive i think, they are so perfect and take up more processing. it's rare to find a synth that sounds nicer with a sine compared to a parabol wave. My favourite parabolic wave is simply triangle wave with x*x with one of the half periods flipped. x*x is a very fast!!!

	Date: 2014-12-06 12:06:58

	By: ed.xmg@retsneum.ellak

hmm... x*x second half flipped...
very cool ! i'll give it a try!!

RBJ Wavetable 101

	Author or source: Robert Bristow-Johnson

	Created: 2005-05-04 20:34:05

	Linked files: Wavetable-101.pdf.

notes

see linked file

Randja compressor

	Author or source: randja

	Type: compressor

	Created: 2009-09-29 07:37:05

notes

I had found this code on the internet then made some improvements (speed) and now I post
it here for others to see.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111

	#include <cmath>
#define max(a,b) (a>b?a:b)

class compressor
{

 private:
 float threshold;
 float attack, release, envelope_decay;
 float output;
 float transfer_A, transfer_B;
 float env, gain;

 public:
 compressor()
 {
 threshold = 1.f;
 attack = release = envelope_decay = 0.f;
 output = 1.f;

 transfer_A = 0.f;
 transfer_B = 1.f;

 env = 0.f;
 gain = 1.f;
 }

 void set_threshold(float value)
 {
 threshold = value;
 transfer_B = output * pow(threshold,-transfer_A);
 }

 void set_ratio(float value)
 {
 transfer_A = value-1.f;
 transfer_B = output * pow(threshold,-transfer_A);
 }

 void set_attack(float value)
 {
 attack = exp(-1.f/value);
 }

 void et_release(float value)
 {
 release = exp(-1.f/value);
 envelope_decay = exp(-4.f/value); /* = exp(-1/(0.25*value)) */
 }

 void set_output(float value)
 {
 output = value;
 transfer_B = output * pow(threshold,-transfer_A);
 }

 void reset()
 {
 env = 0.f; gain = 1.f;
 }

 __forceinline void process(float *input_left, float *input_right,float *output_left, float *output_right, int frames)
 {
 float det, transfer_gain;
 for(int i=0; i<frames; i++)
 {
 det = max(fabs(input_left[i]),fabs(input_right[i]));
 det += 10e-30f; /* add tiny DC offset (-600dB) to prevent denormals */

 env = det >= env ? det : det+envelope_decay*(env-det);

 transfer_gain = env > threshold ? pow(env,transfer_A)*transfer_B:output;

 gain = transfer_gain < gain ?
 transfer_gain+attack *(gain-transfer_gain):
 transfer_gain+release*(gain-transfer_gain);

 output_left[i] = input_left[i] * gain;
 output_right[i] = input_right[i] * gain;
 }
 }

 __forceinline void process(double *input_left, double *input_right, double *output_left, double *output_right,int frames)
 {
 double det, transfer_gain;
 for(int i=0; i<frames; i++)
 {
 det = max(fabs(input_left[i]),fabs(input_right[i]));
 det += 10e-30f; /* add tiny DC offset (-600dB) to prevent denormals */

 env = det >= env ? det : det+envelope_decay*(env-det);

 transfer_gain = env > threshold ? pow(env,transfer_A)*transfer_B:output;

 gain = transfer_gain < gain ?
 transfer_gain+attack *(gain-transfer_gain):
 transfer_gain+release*(gain-transfer_gain);

 output_left[i] = input_left[i] * gain;
 output_right[i] = input_right[i] * gain;
 }
 }

};

Comments

	Date: 2010-08-30 21:04:37

	By: moc.oohay@xofirgomsnart

env = det >= env ? det : det+envelope_decay*(env-det);

I have found it is good to add either a timed peak hold-before-release or something like a "peak magnetism" with an attack/release time that is within a cycle of the lowest expected frequency in the side chain...often ~80Hz is a good reference point... for example here is a snippet to illustrate the idea...please keep in mind this will not work as show because of some obvious things needing to be added...
//add these variables to your compressor object...
class compressor {
float patk; //"seek" slope
float ipatk;
float peakdet;
float target;
float envelope; //the final value used for gain control
int hold; //time to hold peak
int holdcnt;

patk = SAMPLE_RATE/80.0f;
ipatk = 1.0f - patk;
.
.
.
}
///now the envelope following function
float compressor::envelope_tracker(float input)
{
float rect = fabs(input);
holdcnt++;
if(rect>peakdet) {
 peakdet = rect;
 if(holdcnt>hold) //the hold is really optional
 {
 target = rect;
 holdcnt = 0;
 }
}
peakdet*=ipatk; //sort of like capacitor+diode discharge.

if(envelope<target) envelope+=patk;
else envelope -= patk; //sort of like a heat seeking missile ;)
//for the seek function this is really nothing more than a feedback control system, so a more elaborate higher order system could be used...
//the linear interpolation is good to use because
///it is simple while the main attack & release
//functions filter off the corners.
//In either case it is an improvement to a leaky
//peak detector.

}

Another thing I saw in the form of an analog circuit was a "round robin" peak detector which had 4 peak detectors being reset by a JFET to ground and was clocked by simple binary counter IC. The full cycle from 0 to 15 on the binary counter was set at about 80Hz, then the JFET gates were reset every /4 of that period. That way the envelope tracker pretty much grabbed every peak during the 1/80 period, then the "release" time was 1/80th second. This could be implemented digitally very easily ;)

	Date: 2012-12-14 15:24:30

	By: moc.liamg@etteresemv

Hi randja,

I am trying to use your compressor.
Could you explain in what unity shall be given the values of threshold, ratio, release, attack and output ?
Have you a good set of values for these parameters to make it work ?

Thanks in advance

	Date: 2013-07-17 21:22:21

	By: moc.elpmaxe@ylper-on

@vmeserette:

To quote the original code that randja "found" on the Internet and then "made some improvements" (he only added __forceinline):
"
How to use it:

free_comp.cpp and free_comp.hpp implement a simple C++ class called free_comp.
(People are expected to know what to do with it! If not seek help on a beginner
programming forum!)
The free_comp class implements the following methods:
 void set_threshold(float value);
 Sets the threshold level; 'value' must be a _positive_ value
 representing the amplitude as a floating point figure which should be
 1.0 at 0dBFS

 void set_ratio(float value);
 Sets the ratio; 'value' must be in range [0.0; 1.0] with 0.0
 representing a oo:1 ratio, 0.5 a 2:1 ratio; 1.0 a 1:1 ratio and so on

 void set_attack(float value);
 Sets the attack time; 'value' gives the attack time in _samples_

 void set_release(float value);
 Sets the release time; 'value' gives the release time in _samples_

 void set_output(float value);
 Sets the output gain; 'value' represents the gain, where 0dBFS is 1.0
 (see set_threshold())

 void reset();
 Resets the internal state of the compressor (gain reduction)

 void process(float *input_left, float *input_right,
 float *output_left, float *output_right,
 int frames, int skip);
 void process(double *input_left, double *input_right,
 double *output_left, double *output_right,
 int frames, int skip);
 Processes a stereo stream of length 'frames' from either two arrays of
 floats or arrays of doubles 'input_left' and 'input_right' then puts
 the processed data in 'output_left' and 'output_right'.
 'input_{left,right}' and 'output_{left,right}' may be the same location
 in which case the algorithm will work in place. '{input,output}_left'
 and '{input,output}_right' can also point to the same data, in which
 case the algorithm works in mono (although if you process a lot of mono
 data it will yield more performance if you modify the source to make the
 algorithm mono in the first place).
 The 'skip' parameter allows for processing of interleaved as well as two
 separate contiguous streams. For two separate streams this value should
 be 1, for interleaved stereo it should be 2 (but it can also have other
 values than that to process specific channels in an interleaved audio
 stream, though if you do that it is highly recommended to study the
 source first to check whether it yields the expected behaviour or not).
" - Source: http://outsim.co.uk/forum/download/file.php?id=7296

Rossler and Lorenz Oscillators

	Author or source: moc.noicratse@ajelak

	Type: Chaotic LFO

	Created: 2004-10-10 00:13:58

notes

The Rossler and Lorenz functions are iterated chaotic systems - they trace smooth curves
that never repeat the same way twice. Lorenz is "unpitched", having no distinct peaks in
its spectrum -- similar to pink noise. Rossler exhibits definite spectral peaks against a
noisy broadband background.

Time-domain and frequency spectrum of these two functions, as well as other info, can be
found at:

http://www.physics.emory.edu/~weeks/research/tseries1.html

These functions might be useful in simulating "analog drift."

code

	1
2

	Available on the web at:
http://www.tinygod.com/code/BLorenzOsc.zip

Comments

	Date: 2005-01-10 09:11:12

	By: moc.yddaht@yddaht

A Delphi/pascal version for VCL, KOL, Kylix and Freepascal on my website:
http://members.chello.nl/t.koning8/loro_sc.pas

Nice work!

SawSin

	Author or source: Alexander Kritov

	Type: Oscillator shape

	Created: 2002-02-10 12:40:59

code

	1
2
3
4
5
6
7
8

	double sawsin(double x)
{
 double t = fmod(x/(2*M_PI),(double)1.0);
 if (t>0.5)
 return -sin(x);
 if (t<=0.5)
 return (double)2.0*t-1.0;
}

Simple Time Stretching-Granular Synthesizer

	Author or source: Harry-Chris

	Created: 2008-12-18 07:08:20

notes

Matlab function that implements crude time stretching - granulizing function, by overlap
add in time domain.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	function y = gran_func(x, w, H,H2, Fs, tr_amount)

% x -> input signal
% w -> Envelope - Window Vector
% H1 -> Original Hop Size
% H2 -> Synthesis Hop Size
% Fs -> Sample Rate
% str_amount -> time stretching factor

M = length(w);

pin = 1;
pend = length(x) - M;

y = zeros(1, floor(str_amount * length(x)) +M);

count = 1;
idx = 1;

while pin < pend

 input = x(pin : pin+M-1) .* w';

 y(idx : idx + M - 1) = y(idx : idx + M - 1) + input;

 pin = pin + H;
 count = count + 1;
 idx = idx + H2;

end

Sine calculation

	Author or source: Phil Burk

	Type: waveform generation, Taylor approximation of sin()

	Created: 2002-01-17 00:57:01

notes

Code from JSyn for a sine wave generator based on a Taylor Expansion. It is not as
efficient as the filter methods, but it has linear frequency control and is, therefore,
suitable for FM or other time varying applications where accurate frequency is needed. The
sine generated is accurate to at least 16 bits.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	for(i=0; i < nSamples ; i++)
{
 //Generate sawtooth phasor to provide phase for sine generation
 IncrementWrapPhase(phase, freqPtr[i]);
 //Wrap phase back into region where results are more accurate

 if(phase > 0.5)
 yp = 1.0 - phase;
 else
 {
 if(phase < -0.5)
 yp = -1.0 - phase;
 else
 yp = phase;
 }

 x = yp * PI;
 x2 = x*x;

 //Taylor expansion out to x**9/9! factored into multiply-adds
 fastsin = x*(x2*(x2*(x2*(x2*(1.0/362880.0)
 - (1.0/5040.0))
 + (1.0/120.0))
 - (1.0/6.0))
 + 1.0);

 outPtr[i] = fastsin * amplPtr[i];
}

Smooth random LFO Generator

	Author or source: Rob Belcham

	Created: 2009-06-30 08:31:24

notes

I've been after a random LFO that's suitable for modulating a delay line for ages (e.g
for chorus / reverb modulation) , so after i rolled my own, i thought i'd better make it
my first contribution to the music-dsp community.

My aim was to achive a sinusoidal based random but smooth waveform with a frequency
control that has no discontinuities and stays within a -1:1 range. If you listen to it, it
sounds quite like brown noise, or wind through a microphone (at rate = 100Hz for example)

It's written as a matlab m function, so shouldn't be too hard to port to C.

The oscillator generates a random level stepped waveform with random time spent at each
step (within bounds). These levels are linearly interpolated between and used to drive the
frequency of a sinewave. To achive amplitude variation, at each zero crossing a new random
amplitude scale factor is generated. The amplitude coefficient is ramped to this value
with a simple exponential.

An example call would be,
t = 4; Fs = 44100;
y = random_lfo(100, t*Fs, Fs);
axis([0, t*Fs, -1, 1]);
plot(y)

Enjoy !

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	% Random LFO Generator
% creates a random sinusoidal waveform with no discontinuities
% rate = average rate in Hz
% N = run length in samples
% Fs = sample frequency in Hz
function y = random_lfo(rate, N, Fs)

step_freq_scale = Fs / (1*rate);
min_Cn = 0.1 * step_freq_scale;
An = 0;
lastA = 0;
Astep = 0;
y = zeros(1,N); % output
x = 0; % sine phase
lastSign = 0;
amp_scale = 0.6;
new_amp_scale = 0.6;
amp_scale_ramp = exp(1000/Fs)-1;
for (n=1:N)
 if (An == 0) || (An>=Cn)
 % generate a new random freq scale factor
 Cn = floor(step_freq_scale * rand());
 % limit to prevent rapid transitions
 Cn = max(Cn, min_Cn);
 % generate new value & step coefficient
 newA = 0.1 + 0.9*rand();
 Astep = (newA - lastA) / Cn;
 A = lastA;
 lastA = newA;
 % reset counter
 An = 0;
 end
 An = An + 1;
 % generate output
 y(n) = sin(x) * amp_scale;
 % ramp amplitude
 amp_scale = amp_scale + (new_amp_scale - amp_scale) * amp_scale_ramp;
 sin_inc = 2*pi*rate*A/Fs;
 A = A + Astep;
 % increment phase
 x = x + sin_inc;
 if (x >= 2*pi)
 x = x - 2*pi;
 end
 % scale at each zero crossing
 if (sign(y(n)) ~= 0) && (sign(y(n)) ~= lastSign)
 lastSign = sign(y(n));
 new_amp_scale = 0.25 + 0.75*rand();
 end;
end;

Square Waves

	Author or source: Sean Costello

	Type: waveform generation

	Created: 2002-01-15 21:26:38

notes

One way to do a square wave:

You need two buzz generators (see Dodge & Jerse, or the Csound source code, for
implementation details). One of the buzz generators runs at the desired square wave
frequency, while the second buzz generator is exactly one octave above this pitch.
Subtract the higher octave buzz generator's output from the lower buzz generator's output
- the result should be a signal with all odd harmonics, all at equal amplitude. Filter the
resultant signal (maybe integrate it). Voila, a bandlimited square wave! Well, I think it
should work...

The one question I have with the above technique is whether it produces a waveform that
truly resembles a square wave in the time domain. Even if the number of harmonics, and the
relative ratio of the harmonics, is identical to an "ideal" bandwidth-limited square wave,
it may have an entirely different waveshape. No big deal, unless the signal is processed
by a nonlinearity, in which case the results of the nonlinear processing will be far
different than the processing of a waveform that has a similar shape to a square wave.

Comments

	Date: 2003-04-01 01:28:28

	By: dfl@stanford. edu

Actually, I don't think this would work...
The proper way to do it is subtract a phase shifted buzz (aka BLIT) at the same frequency. This is equivalent to comb filtering, which will notch out the even harmonics.

	Date: 2008-11-08 16:24:18

	By: moc.psdallahlav@naes

The above comment is correct, and my concept is inaccurate. My technique may have produced a signal with the proper harmonic structure, but it has been nearly 10 years since I wrote the post, so I can't remember what I was working with.

DFL's technique can be implemented with two buzz generators, or with a single buzz generator in conjunction with a fractional delay, where the delay controls the amount of phase shift.

Trammell Pink Noise (C++ class)

	Author or source: ude.drofnats.amrcc@lfd

	Type: pink noise generator

	Created: 2006-05-06 08:40:38

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	#ifndef _PinkNoise_H
#define _PinkNoise_H

// Technique by Larry "RidgeRat" Trammell 3/2006
// http://home.earthlink.net/~ltrammell/tech/pinkalg.htm
// implementation and optimization by David Lowenfels

#include <cstdlib>
#include <ctime>

#define PINK_NOISE_NUM_STAGES 3

class PinkNoise {
public:
 PinkNoise() {
 srand (time(NULL)); // initialize random generator
 clear();
 }

 void clear() {
 for(size_t i=0; i< PINK_NOISE_NUM_STAGES; i++)
 state[i] = 0.0;
 }

 float tick() {
 static const float RMI2 = 2.0 / float(RAND_MAX); // + 1.0; // change for range [0,1)
 static const float offset = A[0] + A[1] + A[2];

 // unrolled loop
 float temp = float(rand());
 state[0] = P[0] * (state[0] - temp) + temp;
 temp = float(rand());
 state[1] = P[1] * (state[1] - temp) + temp;
 temp = float(rand());
 state[2] = P[2] * (state[2] - temp) + temp;
 return (A[0]*state[0] + A[1]*state[1] + A[2]*state[2])*RMI2 - offset;
 }

protected:
 float state[PINK_NOISE_NUM_STAGES];
 static const float A[PINK_NOISE_NUM_STAGES];
 static const float P[PINK_NOISE_NUM_STAGES];
};

const float PinkNoise::A[] = { 0.02109238, 0.07113478, 0.68873558 }; // rescaled by (1+P)/(1-P)
const float PinkNoise::P[] = { 0.3190, 0.7756, 0.9613 };

#endif

Comments

	Date: 2007-02-09 06:15:59

	By: ten.knilhtrae@6741emmartl

Many thanks to David Lowenfels for posting this implementation of the early experimental version. I recommend switching to the new algorithm form described in 'newpink.htm' -- better range to 9+ octaves, better accuracy to +-0.25 dB, and leveled computational loading. So where is MY submission to the archive? Um... well, it's coming... if he doesn't beat me to the punch again and post his code first! -- Larry Trammell (the RidgeRat)

Waveform generator using MinBLEPS

	Author or source: ku.oc.nomed.nafgpr@ekcol

	Created: 2002-08-05 18:44:50

	Linked files: MinBLEPS.zip.

notes

C code and project file for MSVC6 for a bandwidth-limited saw/square (with PWM) generator
using MinBLEPS.

This code is based on Eli's MATLAB MinBLEP code and uses his original minblep.mat file.
Instead of keeping a list of all active MinBLEPS, the output of each MinBLEP is stored in
a buffer, in which all consequent MinBLEPS and the waveform output are added together.
This optimization makes it fast enough to be used realtime.

Produces slight aliasing when sweeping high frequencies. I don't know wether Eli's
original code does the same, because I don't have MATLAB. Any help would be appreciated.

The project name is 'hardsync', because it's easy to generate hardsync using MinBLEPS.

code

	1

	

Comments

	Date: 2004-07-02 22:31:36

	By: moc.oiduaesionetihw@ofni

http://www.slack.net/~ant/bl-synth/windowed-impulse/

This page also describes a similar algorithm for generating waves. Could the aliasing be due to the fact that the blep only occurs after the discontinuity? On this page the blep also occurs in the opposite direction as well, leading up to the discontinuity.

	Date: 2008-02-11 18:42:15

	By: kernel[@}audiospillage.com

The sawtooth is a nice oscillator but I can't seem to get the square wave to work properly. Anyone else had any luck with this? Also, it's worth noting that the code assumes it is running on a little endian architecture.

	Date: 2009-07-07 04:45:40

	By: moc.enecslatnemirepxe@leinad

I have written GPLv3 C++ source code for a MinBLEP oscillator and also public domain C++ source code for generating the MinBLEP without MatLab.

http://www.experimentalscene.com/articles/minbleps.php - Article and Code

http://www.experimentalscene.com/source.php - Look in DarkWave / latest version / CoreMachines / VCO.cpp

Wavetable Synthesis

	Author or source: Robert Bristow-Johnson

	Created: 2002-05-07 18:46:18

	Linked files: http://www.harmony-central.com/Synth/Articles/Wavetable_101/Wavetable-101.pdf.

notes

Wavetable sythesis AES paper by RBJ.

Weird synthesis

	Author or source: Andy M00cho

	Created: 2002-01-17 00:55:09

notes

(quoted from Andy's mail...)
What I've done in a soft-synth I've been working on is used what I've termed Fooglers, no
reason, just liked the name :) Anyway all I've done is use a *VERY* short delay line of
256 samples and then use 2 controllable taps into the delay with High Frequency Damping,
and a feedback parameter.

Using a tiny fixed delay size of approx. 4.8ms (really 256 samples/1k memory with floats)
means this costs, in terms of cpu consumption practically nothing, and the filter is a
real simple 1 pole low-pass filter. Maybe not DSP'litically correct but all I wanted was
to avoid the high frequencies trashing the delay line when high feedbacks (99%->99.9%) are
used (when the fun starts ;).

I've been getting some really sexy sounds out of this idea, and of course you can have the
delay line tuneable if you choose to use fractional taps, but I'm happy with it as it is..
1 nice simple, yet powerful addition to the base oscillators.

In reality you don't need 2 taps, but I found that using 2 added that extra element of
funkiness...

Comments

	Date: 2002-07-18 18:57:00

	By: moc.loa@attongamlihp

Andy:
I'm curious about your delay line. It's length is
4.8 m.sec.fixed. What are the variables in the two controllable taps and is the 6dB filter variable frequency wise?
Phil

	Date: 2003-01-03 20:01:34

	By: moc.oohay@poportcele

What you have there is the core of a physical modelling algorithm. I have done virtually the same thing to model plucked string instruments in Reaktor. It's amazingly realistic. See http://joeorgren.com

Analysis

Contents:

	Beat Detector Class

	Coefficients for Daubechies wavelets 1-38

	DFT

	Envelope detector

	Envelope follower with different attack and release

	FFT

	FFT classes in C++ and Object Pascal

	Fast in-place Walsh-Hadamard Transform

	Frequency response from biquad coefficients

	Java FFT

	LPC analysis (autocorrelation + Levinson-Durbin recursion)

	Look ahead limiting

	Magnitude and phase plot of arbitrary IIR function, up to 5th order

	Measuring interpollation noise

	QFT and DQFT (double precision) classes

	Simple peak follower

	Tone detection with Goertzel

	Tone detection with Goertzel (x86 ASM)

	Vintage VU meters tutorial

Beat Detector Class

	Author or source: rf.eerf@retsaMPSD

	Created: 2005-05-12 14:35:52

notes

This class was designed for a VST plugin. Basically, it's just a 2nd order LP filter,
followed by an enveloppe detector (thanks Bram), feeding a Schmitt trigger. The rising
edge detector provides a 1-sample pulse each time a beat is detected. Code is self
documented...
Note : The class uses a fixed comparison level, you may need to change it.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

	// ***** BEATDETECTOR.H *****
#ifndef BeatDetectorH
#define BeatDetectorH

class TBeatDetector
{
private:
 float KBeatFilter; // Filter coefficient
 float Filter1Out, Filter2Out;
 float BeatRelease; // Release time coefficient
 float PeakEnv; // Peak enveloppe follower
 bool BeatTrigger; // Schmitt trigger output
 bool PrevBeatPulse; // Rising edge memory
public:
 bool BeatPulse; // Beat detector output

 TBeatDetector();
 ~TBeatDetector();
 virtual void setSampleRate(float SampleRate);
 virtual void AudioProcess (float input);
};
#endif

// ***** BEATDETECTOR.CPP *****
#include "BeatDetector.h"
#include "math.h"

#define FREQ_LP_BEAT 150.0f // Low Pass filter frequency
#define T_FILTER 1.0f/(2.0f*M_PI*FREQ_LP_BEAT) // Low Pass filter time constant
#define BEAT_RTIME 0.02f // Release time of enveloppe detector in second

TBeatDetector::TBeatDetector()
// Beat detector constructor
{
 Filter1Out=0.0;
 Filter2Out=0.0;
 PeakEnv=0.0;
 BeatTrigger=false;
 PrevBeatPulse=false;
 setSampleRate(44100);
}

TBeatDetector::~TBeatDetector()
{
 // Nothing specific to do...
}

void TBeatDetector::setSampleRate (float sampleRate)
// Compute all sample frequency related coeffs
{
 KBeatFilter=1.0/(sampleRate*T_FILTER);
 BeatRelease=(float)exp(-1.0f/(sampleRate*BEAT_RTIME));
}

void TBeatDetector::AudioProcess (float input)
// Process incoming signal
{
 float EnvIn;

 // Step 1 : 2nd order low pass filter (made of two 1st order RC filter)
 Filter1Out=Filter1Out+(KBeatFilter*(input-Filter1Out));
 Filter2Out=Filter2Out+(KBeatFilter*(Filter1Out-Filter2Out));

 // Step 2 : peak detector
 EnvIn=fabs(Filter2Out);
 if (EnvIn>PeakEnv) PeakEnv=EnvIn; // Attack time = 0
 else
 {
 PeakEnv*=BeatRelease;
 PeakEnv+=(1.0f-BeatRelease)*EnvIn;
 }

 // Step 3 : Schmitt trigger
 if (!BeatTrigger)
 {
 if (PeakEnv>0.3) BeatTrigger=true;
 }
 else
 {
 if (PeakEnv<0.15) BeatTrigger=false;
 }

 // Step 4 : rising edge detector
 BeatPulse=false;
 if ((BeatTrigger)&&(!PrevBeatPulse))
 BeatPulse=true;
 PrevBeatPulse=BeatTrigger;
}

Comments

	Date: 2005-05-18 22:59:08

	By: moc.yddaht@yddaht

// Nice work!
//Here's a Delphi and freepascal version:
unit beattrigger;

interface

type
TBeatDetector = class
private
 KBeatFilter, // Filter coefficient
 Filter1Out,
 Filter2Out,
 BeatRelease, // Release time coefficient
 PeakEnv:single; // Peak enveloppe follower
 BeatTrigger, // Schmitt trigger output
 PrevBeatPulse:Boolean; // Rising edge memory
public
 BeatPulse:Boolean; // Beat detector output
 constructor Create;
 procedure setSampleRate(SampleRate:single);
 procedure AudioProcess (input:single);
end;

function fabs(value:single):Single;

implementation

const
 FREQ_LP_BEAT = 150.0; // Low Pass filter frequency
 T_FILTER = 1.0/(2.0 * PI*FREQ_LP_BEAT); // Low Pass filter time constant
 BEAT_RTIME = 0.02; // Release time of enveloppe detector in second

constructor TBeatDetector.create;
// Beat detector constructor
begin
 inherited;
 Filter1Out:=0.0;
 Filter2Out:=0.0;
 PeakEnv:=0.0;
 BeatTrigger:=false;
 PrevBeatPulse:=false;
 setSampleRate(44100);
end;

procedure TBeatDetector.setSampleRate (sampleRate:single);
// Compute all sample frequency related coeffs
begin
 KBeatFilter:=1.0/(sampleRate*T_FILTER);
 BeatRelease:= exp(-1.0/(sampleRate*BEAT_RTIME));
end;

function fabs(value:single):Single;
asm
 fld value
 fabs
 fwait
end;

procedure TBeatDetector.AudioProcess (input:single);
var
 EnvIn:Single;
// Process incoming signal
begin
 // Step 1 : 2nd order low pass filter (made of two 1st order RC filter)
 Filter1Out:=Filter1Out+(KBeatFilter*(input-Filter1Out));
 Filter2Out:=Filter2Out+(KBeatFilter*(Filter1Out-Filter2Out));
 // Step 2 : peak detector
 EnvIn:=fabs(Filter2Out);
 if EnvIn>PeakEnv then PeakEnv:=EnvIn // Attack time = 0
 else
 begin
 PeakEnv:=PeakEnv*BeatRelease;
 PeakEnv:=PeakEnv+(1.0-BeatRelease)*EnvIn;
 end;
 // Step 3 : Schmitt trigger
 if not BeatTrigger then
 begin
 if PeakEnv>0.3 then BeatTrigger:=true;
 end
 else
 begin
 if PeakEnv<0.15 then BeatTrigger:=false;
 end;

 // Step 4 : rising edge detector
 BeatPulse:=false;
 if (BeatTrigger = true) and(not PrevBeatPulse) then
 BeatPulse:=true;
 PrevBeatPulse:=BeatTrigger;
end;

end.

Coefficients for Daubechies wavelets 1-38

	Author or source: Computed by Kazuo Hatano, Compiled and verified by Olli Niemitalo

	Type: wavelet transform

	Created: 2002-01-17 02:00:43

	Linked files: daub.h.

DFT

	Author or source: Andy Mucho

	Type: fourier transform

	Created: 2002-01-17 01:59:38

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	AnalyseWaveform(float *waveform, int framesize)
{
 float aa[MaxPartials];
 float bb[MaxPartials];
 for(int i=0;i<partials;i++)
 {
 aa[i]=0;
 bb[i]=0;
 }

 int hfs=framesize/2;
 float pd=pi/hfs;
 for (i=0;i<framesize;i++)
 {
 float w=waveform[i];
 int im = i-hfs;
 for(int h=0;h<partials;h++)
 {
 float th=(pd*(h+1))*im;
 aa[h]+=w*cos(th);
 bb[h]+=w*sin(th);
 }
 }
 for (int h=0;h<partials;h++)
 amp[h]= sqrt(aa[h]*aa[h]+bb[h]*bb[h])/hfs;
}

Envelope detector

	Author or source: Bram

	Created: 2002-04-12 21:37:18

notes

Basicaly a one-pole LP filter with different coefficients for attack and release fed by
the abs() of the signal. If you don't need different attack and decay settings, just use
in->abs()->LP

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	//attack and release in seconds
float ga = (float) exp(-1/(SampleRate*attack));
float gr = (float) exp(-1/(SampleRate*release));

float envelope=0;

for(...)
{
 //get your data into 'input'
 EnvIn = std::abs(input);

 if(envelope < EnvIn)
 {
 envelope *= ga;
 envelope += (1-ga)*EnvIn;
 }
 else
 {
 envelope *= gr;
 envelope += (1-gr)*EnvIn;
 }
 //envelope now contains.........the envelope ;)
}

Comments

	Date: 2005-05-17 13:58:11

	By: moc.liamg@sisehtnysorpitna

// Slightly faster version of the envelope follower using one multiply form.

// attTime and relTime is in seconds

float ga = exp(-1.0f/(sampleRate*attTime));
float gr = exp(-1.0f/(sampleRate*relTime));

float envOut = 0.0f;

for(...)
{
 // get your data into 'input'

 envIn = fabs(input);

 if(envOut < envIn)
 envOut = envIn + ga * (envOut - envIn);
 else
 envOut = envIn + gr * (envOut - envIn);

 // envOut now contains the envelope
}

Envelope follower with different attack and release

	Author or source: Bram

	Created: 2003-01-15 00:21:39

notes

xxxx_in_ms is xxxx in milliseconds ;-)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	init::

attack_coef = exp(log(0.01)/(attack_in_ms * samplerate * 0.001));
release_coef = exp(log(0.01)/(release_in_ms * samplerate * 0.001));
envelope = 0.0;

loop::

tmp = fabs(in);
if(tmp > envelope)
 envelope = attack_coef * (envelope - tmp) + tmp;
else
 envelope = release_coef * (envelope - tmp) + tmp;

Comments

	Date: 2003-01-18 20:56:46

	By: kd.utd.xaspmak@mj

// the expressions of the form:

xxxx_coef = exp(log(0.01)/(xxxx_in_ms * samplerate * 0.001));

// can be simplified a little bit to:

xxxx_coef = pow(0.01, 1.0/(xxxx_in_ms * samplerate * 0.001));

	Date: 2007-07-01 19:05:26

	By: uh.etle.fni@yfoocs

Here the definition of the attack/release time is the time for the envelope to fall from 100% to 1%.
In the other version, the definition is for the envelope to fall from 100% to 36.7%. So in this one
the envelope is about 4.6 times faster.

FFT

	Author or source: Toth Laszlo

	Created: 2002-02-11 17:43:15

	Linked files: rvfft.ps.

	Linked files: rvfft.cpp.

notes

A paper (postscript) and some C++ source for 4 different fft algorithms, compiled by Toth
Laszlo from the Hungarian Academy of Sciences Research Group on Artificial Intelligence.
Toth says: "I've found that Sorensen's split-radix algorithm was the fastest, so I use
this since then (this means that you may as well delete the other routines in my source -
if you believe my results)."

Comments

	Date: 2011-01-22 20:56:46

	By: moc.oohay@ygobatem

Thank you very much, this was useful, and it worked right out of the box,
so to speak. It's very efficient, and the algorithm is readable. It also includes some
very useful functions.

FFT classes in C++ and Object Pascal

	Author or source: Laurent de Soras (Object Pascal translation by Frederic Vanmol)

	Type: Real-to-Complex FFT and Complex-to-Real IFFT

	Created: 2002-02-14 02:09:26

	Linked files: FFTReal.zip.

notes

(see linkfile)

Fast in-place Walsh-Hadamard Transform

	Author or source: Timo H Tossavainen

	Type: wavelet transform

	Created: 2002-01-17 01:54:52

notes

IIRC, They're also called walsh-hadamard transforms.
Basically like Fourier, but the basis functions are squarewaves with different sequencies.
I did this for a transform data compression study a while back.
Here's some code to do a walsh hadamard transform on long ints in-place (you need to
divide by n to get transform) the order is bit-reversed at output, IIRC.
The inverse transform is the same as the forward transform (expects bit-reversed input).
i.e. x = 1/n * FWHT(FWHT(x)) (x is a vector)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	void inline wht_bfly (long& a, long& b)
{
 long tmp = a;
 a += b;
 b = tmp - b;
}

// just a integer log2
int inline l2 (long x)
{
 int l2;
 for (l2 = 0; x > 0; x >>=1)
 {
 ++ l2;
 }

 return (l2);
}

//
// Fast in-place Walsh-Hadamard Transform //
//

void FWHT (std::vector& data)
{
 const int log2 = l2 (data.size()) - 1;
 for (int i = 0; i < log2; ++i)
 {
 for (int j = 0; j < (1 << log2); j += 1 << (i+1))
 {
 for (int k = 0; k < (1<<i); ++k)
 {
 wht_bfly (data [j + k], data [j + k + (1<<i)]);
 }
 }
 }
}

Frequency response from biquad coefficients

	Author or source: moc.feercinos@retep

	Type: biquad

	Created: 2004-11-29 09:49:47

notes

Here is a formula for plotting the frequency response of a biquad filter. Depending on the
coefficients that you have, you might have to use negative values for the b- coefficients.

code

	1
2
3
4
5

	//w = frequency (0 < w < PI)
//square(x) = x*x

y = 20*log((sqrt(square(a0*square(cos(w))-a0*square(sin(w))+a1*cos(w)+a2)+square(2*a0*cos(w)*sin(w)+a1*(sin(w))))/
 sqrt(square(square(cos(w))- square(sin(w))+b1*cos(w)+b2)+square(2* cos(w)*sin(w)+b1*(sin(w))))));

Comments

	Date: 2006-03-16 19:36:32

	By: ude.drofnats.amrcc@lfd

this formula can have roundoff errors with frequencies close to zero... (especially a problem
with high samplerate filters)

here is a better formula:

from RBJ @ http://groups.google.com/group/comp.dsp/browse_frm/thread/8c0fa8d396aeb444/a1bc5b63ac56b686

 20*log10[|H(e^jw)|] =
 10*log10[(b0+b1+b2)^2 - 4*(b0*b1 + 4*b0*b2 + b1*b2)*phi + 16*b0*b2*phi^2]
-10*log10[(a0+a1+a2)^2 - 4*(a0*a1 + 4*a0*a2 + a1*a2)*phi + 16*a0*a2*phi^2]

where phi = sin^2(w/2)

Java FFT

	Author or source: Loreno Heer

	Type: FFT Analysis

	Created: 2003-11-25 17:38:15

notes

May not work correctly ;-)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

	// WTest.java
/*
 Copyright (C) 2003 Loreno Heer, (helohe at bluewin dot ch)

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/
public class WTest{

 private static double[] sin(double step, int size){
 double f = 0;
 double[] ret = new double[size];
 for(int i = 0; i < size; i++){
 ret[i] = Math.sin(f);
 f += step;
 }
 return ret;
 }

 private static double[] add(double[] a, double[] b){
 double[] c = new double[a.length];
 for(int i = 0; i < a.length; i++){
 c[i] = a[i] + b[i];
 }
 return c;
 }

 private static double[] sub(double[] a, double[] b){
 double[] c = new double[a.length];
 for(int i = 0; i < a.length; i++){
 c[i] = a[i] - b[i];
 }
 return c;
 }

 private static double[] add(double[] a, double b){
 double[] c = new double[a.length];
 for(int i = 0; i < a.length; i++){
 c[i] = a[i] + b;
 }
 return c;
 }

 private static double[] cp(double[] a, int size){
 double[] c = new double[size];
 for(int i = 0; i < size; i++){
 c[i] = a[i];
 }
 return c;
 }

 private static double[] mul(double[] a, double b){
 double[] c = new double[a.length];
 for(int i = 0; i < a.length; i++){
 c[i] = a[i] * b;
 }
 return c;
 }

 private static void print(double[] value){
 for(int i = 0; i < value.length; i++){
 System.out.print(i + "," + value[i] + "\n");
 }
 System.out.println();
 }

 private static double abs(double[] a){
 double c = 0;
 for(int i = 0; i < a.length; i++){
 c = ((c * i) + Math.abs(a[i])) / (i + 1);
 }
 return c;
 }

 private static double[] fft(double[] a, int min, int max, int step){
 double[] ret = new double[(max - min) / step];
 int i = 0;
 for(int d = min; d < max; d = d + step){
 double[] f = sin(fc(d), a.length);
 double[] dif = sub(a, f);
 ret[i] = 1 - abs(dif);
 i++;
 }
 return ret;
 }

 private static double[] fft_log(double[] a){
 double[] ret = new double[1551];
 int i = 0;
 for(double d = 0; d < 15.5; d = d + 0.01){
 double[] f = sin(fc(Math.pow(2,d)), a.length);
 double[] dif = sub(a, f);
 ret[i] = Math.abs(1 - abs(dif));
 i++;
 }
 return ret;
 }

 private static double fc(double d){
 return d * Math.PI / res;
 }

 private static void print_log(double[] value){
 for(int i = 0; i < value.length; i++){
 System.out.print(Math.pow(2,((double)i/100d)) + "," + value[i] + "\n");
 }
 System.out.println();
 }

 public static void main(String[] args){
 double[] f_0 = sin(fc(440), sample_length); // res / pi =>14005
 //double[] f_1 = sin(.02, sample_length);
 double[] f_2 = sin(fc(520), sample_length);
 //double[] f_3 = sin(.25, sample_length);

 //double[] f = add(add(add(f_0, f_1), f_2), f_3);

 double[] f = add(f_0, f_2);

 //print(f);

 double[] d = cp(f,1000);
 print_log(fft_log(d));
 }

 static double length = .2; // sec
 static int res = 44000; // resoultion (pro sec)
 static int sample_length = res; // resoultion

}

LPC analysis (autocorrelation + Levinson-Durbin recursion)

	Author or source: ten.enegatum@liam

	Created: 2004-04-07 09:37:51

notes

The autocorrelation function implements a warped autocorrelation, so that frequency
resolution can be specified by the variable 'lambda'. Levinson-Durbin recursion
calculates autoregression coefficients a and reflection coefficients (for lattice filter
implementation) K. Comments for Levinson-Durbin function implement matlab version of the
same function.

No optimizations.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

	//find the order-P autocorrelation array, R, for the sequence x of length L and warping of lambda
//wAutocorrelate(&pfSrc[stIndex],siglen,R,P,0);
wAutocorrelate(float * x, unsigned int L, float * R, unsigned int P, float lambda)
{
 double * dl = new double [L];
 double * Rt = new double [L];
 double r1,r2,r1t;
 R[0]=0;
 Rt[0]=0;
 r1=0;
 r2=0;
 r1t=0;
 for(unsigned int k=0; k<L;k++)
 {
 Rt[0]+=double(x[k])*double(x[k]);

 dl[k]=r1-double(lambda)*double(x[k]-r2);
 r1 = x[k];
 r2 = dl[k];
 }
 for(unsigned int i=1; i<=P; i++)
 {
 Rt[i]=0;
 r1=0;
 r2=0;
 for(unsigned int k=0; k<L;k++)
 {
 Rt[i]+=double(dl[k])*double(x[k]);

 r1t = dl[k];
 dl[k]=r1-double(lambda)*double(r1t-r2);
 r1 = r1t;
 r2 = dl[k];
 }
 }
 for(i=0; i<=P; i++)
 R[i]=float(Rt[i]);
 delete[] dl;
 delete[] Rt;
}

// Calculate the Levinson-Durbin recursion for the autocorrelation sequence R of length P+1 and return the autocorrelation coefficients a and reflection coefficients K
LevinsonRecursion(unsigned int P, float *R, float *A, float *K)
{
 double Am1[62];

 if(R[0]==0.0) {
 for(unsigned int i=1; i<=P; i++)
 {
 K[i]=0.0;
 A[i]=0.0;
 }}
 else {
 double km,Em1,Em;
 unsigned int k,s,m;
 for (k=0;k<=P;k++){
 A[0]=0;
 Am1[0]=0; }
 A[0]=1;
 Am1[0]=1;
 km=0;
 Em1=R[0];
 for (m=1;m<=P;m++) //m=2:N+1
 {
 double err=0.0f; //err = 0;
 for (k=1;k<=m-1;k++) //for k=2:m-1
 err += Am1[k]*R[m-k]; // err = err + am1(k)*R(m-k+1);
 km = (R[m]-err)/Em1; //km=(R(m)-err)/Em1;
 K[m-1] = -float(km);
 A[m]=(float)km; //am(m)=km;
 for (k=1;k<=m-1;k++) //for k=2:m-1
 A[k]=float(Am1[k]-km*Am1[m-k]); // am(k)=am1(k)-km*am1(m-k+1);
 Em=(1-km*km)*Em1; //Em=(1-km*km)*Em1;
 for(s=0;s<=P;s++) //for s=1:N+1
 Am1[s] = A[s]; // am1(s) = am(s)
 Em1 = Em; //Em1 = Em;
 }
 }
 return 0;
}

Comments

	Date: 2005-03-31 15:16:20

	By: ed.luosfosruoivas@naitsirhC

// Blind Object Pascal Translation:
// --------------------------------

unit Levinson;

interface

type
 TDoubleArray = array of Double;
 TSingleArray = array of Single;

implementation

//find the P-order autocorrelation array, R, for the sequence x of length L and warping of lambda
procedure Autocorrelate(x,R : TSingleArray; P : Integer; lambda : Single; l: Integer = -1);
var dl,Rt : TDoubleArray;
 r1,r2,r1t : Double;
 k,i : Integer;
begin
 // Initialization
 if l=-1 then l:=Length(x);
 SetLength(dl,l);
 SetLength(Rt,l);
 R[0]:=0;
 Rt[0]:=0;
 r1:=0;
 r2:=0;
 r1t:=0;

 for k:=0 to l-1 do
 begin
 Rt[0]:=Rt[0]+x[k]*x[k];
 dl[k]:=r1-lambda*(x[k]-r2);
 r1:= x[k];
 r2:= dl[k];
 end;

 for i:=1 to P do
 begin
 Rt[i]:=0;
 r1:=0;
 r2:=0;
 for k:=0 to L-1 do
 begin
 Rt[i]:=Rt[i]+dl[k]*x[k];
 r1t:= dl[k];
 dl[k]:=r1-lambda*(r1t-r2);
 r1:=r1t;
 r2:=dl[k];
 end;
 end;

 for i:=1 to P do R[i]:=Rt[i];
 setlength(Rt,0);
 setlength(dl,0);
end;

// Calculate the Levinson-Durbin recursion for the autocorrelation sequence
// R of length P+1 and return the autocorrelation coefficients a and reflection coefficients K
procedure LevinsonRecursion(P : Integer; R,A,K : TSingleArray);
var Am1 : TDoubleArray;
 i,j,s,m : Integer;
 km,Em1,Em : Double;
 err : Double;
begin
 SetLength(Am1,62);
 if (R[0]=0.0) then
 begin
 for i:=1 to P do
 begin
 K[i]:=0.0;
 A[i]:=0.0;
 end;
 end
 else
 begin
 for j:=0 to P do
 begin
 A[0]:=0;
 Am1[0]:=0;
 end;
 A[0]:=1;
 Am1[0]:=1;
 km:=0;
 Em1:=R[0];
 for m:=1 to P do
 begin
 err:=0.0;
 for j:=1 to m-1 do err:=err+Am1[j]*R[m-j];
 km:=(R[m]-err)/Em1;
 K[m-1]:=-km;
 A[m]:=km;
 for j:=1 to m-1 do A[j]:=Am1[j]-km*Am1[m-j];
 Em:=(1-km*km)*Em1;
 for s:=0 to P do Am1[s]:=A[s];
 Em1:=Em;
 end;
 end;
end;

end.

Look ahead limiting

	Author or source: Wilfried Welti

	Created: 2002-01-17 03:08:11

notes

use add_value with all values which enter the look-ahead area,
and remove_value with all value which leave this area. to get
the maximum value in the look-ahead area, use get_max_value.
in the very beginning initialize the table with zeroes.

If you always want to know the maximum amplitude in
your look-ahead area, the thing becomes a sorting
problem. very primitive approach using a look-up table

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

	void lookup_add(unsigned section, unsigned size, unsigned value)
{
 if (section==value)
 lookup[section]++;
 else
 {
 size >>= 1;
 if (value>section)
 {
 lookup[section]++;
 lookup_add(section+size,size,value);
 }
 else
 lookup_add(section-size,size,value);
 }
}

void lookup_remove(unsigned section, unsigned size, unsigned value)
{
 if (section==value)
 lookup[section]--;
 else
 {
 size >>= 1;
 if (value>section)
 {
 lookup[section]--;
 lookup_remove(section+size,size,value);
 }
 else
 lookup_remove(section-size,size,value);
 }
}

unsigned lookup_getmax(unsigned section, unsigned size)
{
 unsigned max = lookup[section] ? section : 0;
 size >>= 1;
 if (size)
 if (max)
 {
 max = lookup_getmax((section+size),size);
 if (!max) max=section;
 }
 else
 max = lookup_getmax((section-size),size);
 return max;
}

void add_value(unsigned value)
{
 lookup_add(LOOKUP_VALUES>>1, LOOKUP_VALUES>>1, value);
}

void remove_value(unsigned value)
{
 lookup_remove(LOOKUP_VALUES>>1, LOOKUP_VALUES>>1, value);
}

unsigned get_max_value()
{
 return lookup_getmax(LOOKUP_VALUES>>1, LOOKUP_VALUES>>1);
}

Magnitude and phase plot of arbitrary IIR function, up to 5th order

	Author or source: George Yohng

	Type: magnitude and phase at any frequency

	Created: 2002-08-01 00:43:57

notes

Amplitude and phase calculation of IIR equation
run at sample rate "sampleRate" at frequency "F".

AMPLITUDE

cf_mag(F,sampleRate,
 a0,a1,a2,a3,a4,a5,
 b0,b1,b2,b3,b4,b5)

PHASE

cf_phi(F,sampleRate,
 a0,a1,a2,a3,a4,a5,
 b0,b1,b2,b3,b4,b5)

If you need a frequency diagram, draw a plot for
F=0...sampleRate/2

If you need amplitude in dB, use cf_lin2db(cf_mag(.......))

Set b0=-1 if you have such function:

y[n] = a0*x[n] + a1*x[n-1] + a2*x[n-2] + a3*x[n-3] + a4*x[n-4] + a5*x[n-5] +
 + b1*y[n-1] + b2*y[n-2] + b3*y[n-3] + b4*y[n-4] + b5*y[n-5];

Set b0=1 if you have such function:

y[n] = a0*x[n] + a1*x[n-1] + a2*x[n-2] + a3*x[n-3] + a4*x[n-4] + a5*x[n-5] +
 - b1*y[n-1] - b2*y[n-2] - b3*y[n-3] - b4*y[n-4] - b5*y[n-5];

Do not try to reverse engineer these formulae - they don't give any sense
other than they are derived from transfer function, and they work. :)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

	/*
 C file can be downloaded from
 http://www.yohng.com/dsp/cfsmp.c
*/

#define C_PI 3.14159265358979323846264

double cf_mag(double f,double rate,
 double a0,double a1,double a2,double a3,double a4,double a5,
 double b0,double b1,double b2,double b3,double b4,double b5)
{
 return
 sqrt((a0*a0 + a1*a1 + a2*a2 + a3*a3 + a4*a4 + a5*a5 +
 2*(a0*a1 + a1*a2 + a2*a3 + a3*a4 + a4*a5)*cos((2*f*C_PI)/rate) +
 2*(a0*a2 + a1*a3 + a2*a4 + a3*a5)*cos((4*f*C_PI)/rate) +
 2*a0*a3*cos((6*f*C_PI)/rate) + 2*a1*a4*cos((6*f*C_PI)/rate) +
 2*a2*a5*cos((6*f*C_PI)/rate) + 2*a0*a4*cos((8*f*C_PI)/rate) +
 2*a1*a5*cos((8*f*C_PI)/rate) + 2*a0*a5*cos((10*f*C_PI)/rate))/
 (b0*b0 + b1*b1 + b2*b2 + b3*b3 + b4*b4 + b5*b5 +
 2*(b0*b1 + b1*b2 + b2*b3 + b3*b4 + b4*b5)*cos((2*f*C_PI)/rate) +
 2*(b0*b2 + b1*b3 + b2*b4 + b3*b5)*cos((4*f*C_PI)/rate) +
 2*b0*b3*cos((6*f*C_PI)/rate) + 2*b1*b4*cos((6*f*C_PI)/rate) +
 2*b2*b5*cos((6*f*C_PI)/rate) + 2*b0*b4*cos((8*f*C_PI)/rate) +
 2*b1*b5*cos((8*f*C_PI)/rate) + 2*b0*b5*cos((10*f*C_PI)/rate)));
}

double cf_phi(double f,double rate,
 double a0,double a1,double a2,double a3,double a4,double a5,
 double b0,double b1,double b2,double b3,double b4,double b5)
{
 atan2((a0*b0 + a1*b1 + a2*b2 + a3*b3 + a4*b4 + a5*b5 +
 (a0*b1 + a1*(b0 + b2) + a2*(b1 + b3) + a5*b4 + a3*(b2 + b4) +
 a4*(b3 + b5))*cos((2*f*C_PI)/rate) +
 ((a0 + a4)*b2 + (a1 + a5)*b3 + a2*(b0 + b4) +
 a3*(b1 + b5))*cos((4*f*C_PI)/rate) + a3*b0*cos((6*f*C_PI)/rate) +
 a4*b1*cos((6*f*C_PI)/rate) + a5*b2*cos((6*f*C_PI)/rate) +
 a0*b3*cos((6*f*C_PI)/rate) + a1*b4*cos((6*f*C_PI)/rate) +
 a2*b5*cos((6*f*C_PI)/rate) + a4*b0*cos((8*f*C_PI)/rate) +
 a5*b1*cos((8*f*C_PI)/rate) + a0*b4*cos((8*f*C_PI)/rate) +
 a1*b5*cos((8*f*C_PI)/rate) +
 (a5*b0 + a0*b5)*cos((10*f*C_PI)/rate))/
 (b0*b0 + b1*b1 + b2*b2 + b3*b3 + b4*b4 + b5*b5 +
 2*((b0*b1 + b1*b2 + b3*(b2 + b4) + b4*b5)*cos((2*f*C_PI)/rate) +
 (b2*(b0 + b4) + b3*(b1 + b5))*cos((4*f*C_PI)/rate) +
 (b0*b3 + b1*b4 + b2*b5)*cos((6*f*C_PI)/rate) +
 (b0*b4 + b1*b5)*cos((8*f*C_PI)/rate) +
 b0*b5*cos((10*f*C_PI)/rate))),

 ((a1*b0 + a3*b0 + a5*b0 - a0*b1 + a2*b1 + a4*b1 - a1*b2 +
 a3*b2 + a5*b2 - a0*b3 - a2*b3 + a4*b3 -
 a1*b4 - a3*b4 + a5*b4 - a0*b5 - a2*b5 - a4*b5 +
 2*(a3*b1 + a5*b1 - a0*b2 + a4*(b0 + b2) - a1*b3 + a5*b3 +
 a2*(b0 - b4) - a0*b4 - a1*b5 - a3*b5)*cos((2*f*C_PI)/rate) +
 2*(a3*b0 + a4*b1 + a5*(b0 + b2) - a0*b3 - a1*b4 - a0*b5 - a2*b5)*
 cos((4*f*C_PI)/rate) + 2*a4*b0*cos((6*f*C_PI)/rate) +
 2*a5*b1*cos((6*f*C_PI)/rate) - 2*a0*b4*cos((6*f*C_PI)/rate) -
 2*a1*b5*cos((6*f*C_PI)/rate) + 2*a5*b0*cos((8*f*C_PI)/rate) -
 2*a0*b5*cos((8*f*C_PI)/rate))*sin((2*f*C_PI)/rate))/
 (b0*b0 + b1*b1 + b2*b2 + b3*b3 + b4*b4 + b5*b5 +
 2*(b0*b1 + b1*b2 + b2*b3 + b3*b4 + b4*b5)*cos((2*f*C_PI)/rate) +
 2*(b0*b2 + b1*b3 + b2*b4 + b3*b5)*cos((4*f*C_PI)/rate) +
 2*b0*b3*cos((6*f*C_PI)/rate) + 2*b1*b4*cos((6*f*C_PI)/rate) +
 2*b2*b5*cos((6*f*C_PI)/rate) + 2*b0*b4*cos((8*f*C_PI)/rate) +
 2*b1*b5*cos((8*f*C_PI)/rate) + 2*b0*b5*cos((10*f*C_PI)/rate)));
}

double cf_lin2db(double lin)
{
 if (lin<9e-51) return -1000; /* prevent invalid operation */
 return 20*log10(lin);
}

Comments

	Date: 2004-01-02 08:46:35

	By: Rob

% Actually it is simpler to simply take the zero-padded b and a coefficients and do real->complex
% FFT like this (matlab code):

H_complex=fft(b,N)./fft(a,N);
phase=angle(H_complex);
Magn=abs(H_complex);

% This will give you N/2 points from 0 to pi angle freq (or 0 to nyquist freq).
% /Rob

	Date: 2004-10-01 00:55:09

	By: ed.luosfosruoivas@naitsirhC

// Here are the formulas if you only have a biquad. But i am not sure, if maybe the
// phase is shifted with pi/2...

20*Log10(
 sqrt(
 (a0*a0+a1*a1+a2*a2+
 2*(a0*a1+a1*a2)*cos(w)+
 2*(a0*a2)* cos(2*w)
)
 /
 (
 1 + b1*b1 + b2*b2 +
 2*(b1 + b1*b2)*cos(w)+
 2*b2*cos(2*w)
)
)
)

ArcTan2(
 (
 a0+a1*b1+a2*b2+
 (a0*b1+a1*(1+b2)+a2*b1)*cos(w)+
 (a0*b2+a2)*cos(2*w)
)
 /
 (
 1+b1*b1+b2*b2+
 2*
 (
 (b1+b1*b2)*cos(w)+ b2*cos(2*w)
)
)
 ,
 (
 (
 a1-a0*b1+a2*b1-a1*b2+
 2*(-a0*b2+a2)*cos(w)
)*sin(w)
 /
 (
 1+b1*b1+b2*b2+
 2*(b1 + b1*b2)*cos(w)+
 2*b2*cos(2*w)
)
)
)

	Date: 2005-03-28 22:43:17

	By: ed.luosfosruoivas@naitsirhC

// Recursive Delphi Code with arbitrary order:

unit Plot;

interface

type TArrayOfDouble = Array of Double;

function MagnitudeCalc(f,rate : Double; a,b : TArrayOfDouble): Double;

implementation

uses Math;

function MulVectCalc(const v: TArrayOfDouble; const Z, N : Integer) : Double;
begin
 if N=0
 then result:=0
 else result:=(v[N-1]*v[N-1+Z])+MulVectCalc(v,Z,N-1);
end;

function MagCascadeCalc(const v: TArrayOfDouble; const w : double; N, Order : Integer): Double;
begin
 if N=1
 then result:=(MulVectCalc(v,0,Order))
 else result:=((MulVectCalc(v,N-1,1+Order-N)*(2*cos((N-1)*w))+MagCascadeCalc(v, w, N-1, Order)));
end;

function MagnitudeCalc(f,rate : Double; a,b : TArrayOfDouble): Double;
var w : Double;
begin
 w:=(2*f*pi)/rate;
 result:=sqrt(MagCascadeCalc(a, w, Length(a),Length(a))/MagCascadeCalc(b, w, Length(b),Length(b)));
end;

end.

	Date: 2005-07-27 12:39:52

	By: ed.luosfosruoivas@naitsirhC

function CalcMagPart(w: Double; C : TDoubleArray):Double;
var i,j,l : Integer;
 temp : Double;
begin
 l:=Length(C);
 temp:=0;
 for j:=0 to l-1
 do temp:=temp+C[j]*C[j];
 result:=temp;
 for i:=1 to l-1 do
 begin
 temp:=0;
 for j:=0 to l-i-1
 do temp:=temp+C[j]*C[j+i];
 result:=Result+2*temp*cos(i*w);
 end;
end;

function CalcMagnitude_dB(const f,rate: Double; const A,B: TDoubleArray): Double;
var w : Double;
begin
 w:=(2*f*pi)/rate;
 result:=10*log10(CalcMagPart(w,A)/CalcMagPart(w,B));
end;

// Here's a really fast function for an arbitrary IIR with high order without stack overflows
// or recursion. And specially for John without sqrt.

Measuring interpollation noise

	Author or source: Jon Watte

	Created: 2002-01-17 02:00:09

notes

You can easily estimate the error by evaluating the actual function and
evaluating your interpolator at each of the mid-points between your
samples. The absolute difference between these values, over the absolute
value of the "correct" value, is your relative error. log10 of your relative
error times 20 is an estimate of your quantization noise in dB. Example:

You have a table for every 0.5 "index units". The value at index unit 72.0
is 0.995 and the value at index unit 72.5 is 0.999. The interpolated value
at index 72.25 is 0.997. Suppose the actual function value at that point was
0.998; you would have an error of 0.001 which is a relative error of 0.001002004..
log10(error) is about -2.99913, which times 20 is about -59.98. Thus, that's
your quantization noise at that position in the table. Repeat for each pair of
samples in the table.

Note: I said "quantization noise" not "aliasing noise". The aliasing noise will,
as far as I know, only happen when you start up-sampling without band-limiting
and get frequency aliasing (wrap-around), and thus is mostly independent of
what specific interpolation mechanism you're using.

QFT and DQFT (double precision) classes

	Author or source: Joshua Scholar

	Created: 2003-05-17 16:17:35

	Linked files: qft.tar_1.gz.

notes

Since it's a Visual C++ project (though it has relatively portable C++) I
guess the main audience are PC users. As such I'm including a zip file.
Some PC users wouldn't know what to do with a tgz file.

The QFT and DQFT (double precision) classes supply the following functions:

 1. Real valued FFT and inverse FFT functions. Note that separate arraysare used
 for real and imaginary component of the resulting spectrum.

 2. Decomposition of a spectrum into a separate spectrum of the evensamples
 and a spectrum of the odd samples. This can be useful for buildingfilter banks.

 3. Reconstituting a spectrum from separate spectrums of the even samples
 and odd samples. This can be useful for building filter banks.

 4. A discrete Sin transform (a QFT decomposes an FFT into a DST and DCT).

 5. A discrete Cos transfrom.

 6. Since a QFT does it's last stage calculating from the outside in thelast part
 can be left unpacked and only calculated as needed in the case wherethe entire
 spectrum isn't needed (I used this for calculating correlations andconvolutions
 where I only needed half of the results).
 ReverseNoUnpack()
 UnpackStep()
 and NegUnpackStep()
 implement this functionality

 NOTE Reverse() normalizes its results (divides by one half the blocklength), but
 ReverseNoUnpack() does not.

 7. Also if you only want the first half of the results you can call ReverseHalf()

 NOTE Reverse() normalizes its results (divides by one half the blocklength), but
 ReverseHalf() does not.

 8. QFT is less numerically stable than regular FFTs. With singleprecision calculations,
 a block length of 2^15 brings the accuracy down to being barelyaccurate enough.
 At that size, single precision calculations tested sound files wouldoccasionally have
 a sample off by 2, and a couple off by 1 per block. Full volume whitenoise would
generate
 a few samples off by as much as 6 per block at the end, beginning and middle.

 No matter what the inputs the errors are always at the same positions in the block.
 There some sort of cancelation that gets more delicate as the block size gets bigger.

 For the sake of doing convolutions and the like where the forward transform is
 done only once for one of the inputs, I created a AccurateForward() function.
 It uses a regular FFT algorithm for blocks larger than 2^12, and decomposes into even
and
 odd FFTs recursively.

 In any case you can always use the double precision routines to get more accuracy.
 DQFT even has routines that take floats as inputs and return double precision
 spectrum outputs.

As for portability:

1. The files qft.cpp and dqft.cpp start with defines:
#define _USE_ASM

If you comment those define out, then what's left is C++ with no assembly language.

2. There is unnecessary windows specific code in "criticalSection.h"
I used a critical section because objects are not reentrant (each object has
permanent scratch pad memory), but obviously critical sections are operating
system specific. In any case that code can easily be taken out.

If you look at my code and see that there's an a test built in the examples
that makes sure that the results are in the ballpark of being right. It
wasn't that I expected the answers to be far off, it was that I uncommenting
the "no assembly language" versions of some routines and I wanted to make
sure that they weren't broken.

Simple peak follower

	Author or source: Phil Burk

	Type: amplitude analysis

	Created: 2002-01-17 01:57:19

notes

This simple peak follower will give track the peaks of a signal. It will rise rapidly when
the input is rising, and then decay exponentially when the input drops. It can be used to
drive VU meters, or used in an automatic gain control circuit.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	// halfLife = time in seconds for output to decay to half value after an impulse

static float output = 0.0;

float scalar = pow(0.5, 1.0/(halfLife * sampleRate)));

if(input < 0.0)
 input = -input; /* Absolute value. */

if (input >= output)
{
 /* When we hit a peak, ride the peak to the top. */
 output = input;
}
else
{
 /* Exponential decay of output when signal is low. */
 output = output * scalar;
 /*
 ** When current gets close to 0.0, set current to 0.0 to prevent FP underflow
 ** which can cause a severe performance degradation due to a flood
 ** of interrupts.
 */
 if(output < VERY_SMALL_FLOAT) output = 0.0;
}

Comments

	Date: 2013-01-26 09:48:15

	By: moc.liamg@osoromaerfac

#ifndef VERY_SMALL_FLOAT
#define VERY_SMALL_FLOAT 1.0e-30F
#endif

Tone detection with Goertzel

	Author or source: on.biu.ii@rnepse

	Type: Goertzel

	Created: 2004-04-07 09:37:10

	Linked files: http://www.ii.uib.no/~espenr/tonedetect.zip.

notes

Goertzel is basically DFT of parts of a spectrum not the total spectrum as you normally do
with FFT. So if you just want to check out the power for some frequencies this could be
better. Is good for DTFM detection I've heard.

The WNk isn't calculated 100% correctly, but it seems to work so ;) Yeah and the code is
C++ so you might have to do some small adjustment to compile it as C.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107

	/** Tone detect by Goertzel algorithm
 *
 * This program basically searches for tones (sines) in a sample and reports the different dB it finds for
 * different frequencies. Can easily be extended with some thresholding to report true/false on detection.
 * I'm far from certain goertzel it implemented 100% correct, but it works :)
 *
 * Hint, the SAMPLERATE, BUFFERSIZE, FREQUENCY, NOISE and SIGNALVOLUME all affects the outcome of the reported dB. Tweak
 * em to find the settings best for your application. Also, seems to be pretty sensitive to noise (whitenoise anyway) which
 * is a bit sad. Also I don't know if the goertzel really likes float values for the frequency ... And using 44100 as
 * samplerate for detecting 6000 Hz tone is kinda silly I know :)
 *
 * Written by: Espen Riskedal, espenr@ii.uib.no, july-2002
 */

#include <iostream>
#include <cmath>
#include <cstdlib>

using std::rand;
// math stuff
using std::cos;
using std::abs;
using std::exp;
using std::log10;
// iostream stuff
using std::cout;
using std::endl;

#define PI 3.14159265358979323844
// change the defines if you want to
#define SAMPLERATE 44100
#define BUFFERSIZE 8820
#define FREQUENCY 6000
#define NOISE 0.05
#define SIGNALVOLUME 0.8

/** The Goertzel algorithm computes the k-th DFT coefficient of the input signal using a second-order filter.
 * http://ptolemy.eecs.berkeley.edu/papers/96/dtmf_ict/www/node3.html.
 * Basiclly it just does a DFT of the frequency we want to check, and none of the others (FFT calculates for all frequencies).
 */
float goertzel(float *x, int N, float frequency, int samplerate) {
 float Skn, Skn1, Skn2;
 Skn = Skn1 = Skn2 = 0;

 for (int i=0; i<N; i++) {
 Skn2 = Skn1;
 Skn1 = Skn;
 Skn = 2*cos(2*PI*frequency/samplerate)*Skn1 - Skn2 + x[i];
 }

 float WNk = exp(-2*PI*frequency/samplerate); // this one ignores complex stuff
 //float WNk = exp(-2*j*PI*k/N);
 return (Skn - WNk*Skn1);
}

/** Generates a tone of the specified frequency
 * Gotten from: http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=3c641e%243jn%40uicsl.csl.uiuc.edu
 */
float *makeTone(int samplerate, float frequency, int length, float gain=1.0) {
 //y(n) = 2 * cos(A) * y(n-1) - y(n-2)
 //A= (frequency of interest) * 2 * PI / (sampling frequency)
 //A is in radians.
 // frequency of interest MUST be <= 1/2 the sampling frequency.
 float *tone = new float[length];
 float A = frequency*2*PI/samplerate;

 for (int i=0; i<length; i++) {
 if (i > 1) tone[i]= 2*cos(A)*tone[i-1] - tone[i-2];
 else if (i > 0) tone[i] = 2*cos(A)*tone[i-1] - (cos(A));
 else tone[i] = 2*cos(A)*cos(A) - cos(2*A);
 }

 for (int i=0; i<length; i++) tone[i] = tone[i]*gain;

 return tone;
}

/** adds whitenoise to a sample */
void *addNoise(float *sample, int length, float gain=1.0) {
 for (int i=0; i<length; i++) sample[i] += (2*(rand()/(float)RAND_MAX)-1)*gain;
}

/** returns the signal power/dB */
float power(float value) {
 return 20*log10(abs(value));
}

int main(int argc, const char* argv) {
 cout << "Samplerate: " << SAMPLERATE << "Hz\n";
 cout << "Buffersize: " << BUFFERSIZE << " samples\n";
 cout << "Correct frequency is: " << FREQUENCY << "Hz\n";
 cout << " - signal volume: " << SIGNALVOLUME*100 << "%\n";
 cout << " - white noise: " << NOISE*100 << "%\n";

 float *tone = makeTone(SAMPLERATE, FREQUENCY, BUFFERSIZE, SIGNALVOLUME);
 addNoise(tone, BUFFERSIZE,NOISE);

 int stepsize = FREQUENCY/5;

 for (int i=0; i<10; i++) {
 int freq = stepsize*i;
 cout << "Trying freq: " << freq << "Hz -> dB: " << power(goertzel(tone, BUFFERSIZE, freq, SAMPLERATE)) << endl;
 }
 delete tone;

 return 0;
}

Comments

	Date: 2004-04-12 22:03:56

	By: ed.luosfosruoivas@naitsirhC

// yet untested Delphi translation of the algorithm:

function Goertzel(Buffer:array of Single; frequency, samplerate: single):single;
var Skn, Skn1, Skn2 : Single;
 i : Integer;
 temp1, temp2 : Single;
begin
 skn:=0;
 skn1:=0;
 skn2:=0;
 temp1:=2*PI*frequency/samplerate;
 temp2:=Cos(temp1);
 for i:=0 to Length(Buffer) do
 begin
 Skn2 = Skn1;
 Skn1 = Skn;
 Skn = 2*temp2*Skn1 - Skn2 + Buffer[i];
 end;
 Result:=(Skn - exp(-temp1)*Skn1);
end;

// Maybe someone can use it...
//
// Christian

Tone detection with Goertzel (x86 ASM)

	Author or source: ed.luosfosruoivas@naitsirhC

	Type: Tone detection with Goertzel in x86 assembly

	Created: 2004-06-27 22:43:46

notes

This is an "assemblified" version of the Goertzel Tone Detector. It is about 2 times
faster than the original code.

The code has been tested and it works fine.

Hope you can use it. I'm gonna try to build a Tuner (as VST-Plugin). I hope, that this
will work :-\ If anyone is intrested, please let me know.

Christian

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	function Goertzel_x87(Buffer :Psingle; BLength:Integer; frequency: Single; samplerate: Single):Single;
asm
 mov ecx,BLength
 mov eax,Buffer
 fld x2
 fldpi
 fmulp
 fmul frequency
 fdiv samplerate
 fld st(0)
 fcos
 fld x2
 fmulp
 fxch st(1)
 fldz
 fsub st(0),st(1)
 fstp st(1)

 fldl2e
 fmul
 fld st(0)
 frndint
 fsub st(1),st(0)
 fxch st(1)
 f2xm1
 fld1
 fadd
 fscale
 fstp st(1)

 fldz
 fldz
 fldz
@loopStart:
 fxch st(1)
 fxch st(2)
 fstp st(0)
 fld st(3)
 fmul st(0),st(1)
 fsub st(0),st(2)
 fld [eax].Single
 faddp
 add eax,4
 loop @loopStart
@loopEnd:

 fxch st(3)
 fmulp st(2), st(0)
 fsub st(0),st(1)
 fstp result
 ffree st(2)
 ffree st(1)
 ffree st(0)
end;

Comments

	Date: 2005-08-17 17:20:02

	By: moc.yddaht@yddaht

// Here's a variant on the theme that compensates for harmonics:

Function Goertzel(.Buffer: array of double; frequency, samplerate: double):.double;
var
Qkn, Qkn1, Qkn2, Wkn, Mk: double;
i: integer;
begin
Qkn:=0; Qkn1:=0;
Wkn:=2*.PI*.frequency/samplerate;
Mk:=2*.Cos(.Wkn);
for i:=0 to High(.Buffer) do begin
 Qkn2: = Qkn1; Qkn1: = Qkn;
 Qkn : = Buffer[.i] + Mk*.Qkn1 - Qkn2;
end;
Result: = sqrt(.Qkn*.Qkn + Qkn1*.Qkn1 - Mk*.Qkn*.Qkn1);
end;

// Posted on www.delphimaster.ru by Jeer

Vintage VU meters tutorial

	Author or source: moc.liamg@321tiloen

	Created: 2009-03-10 15:24:04

notes

Here is a short tutorial about vintage-styled VU meters:

http://neolit123.blogspot.com/2009/03/designing-analog-vu-meter-in-dsp.html

Filters

Contents:

	1 pole LPF for smooth parameter changes

	1-RC and C filter

	18dB/oct resonant 3 pole LPF with tanh() dist

	1st and 2nd order pink noise filters

	3 Band Equaliser

	303 type filter with saturation

	4th order Linkwitz-Riley filters

	All-Pass Filters, a good explanation

	Another 4-pole lowpass…

	Bass Booster

	Biquad C code

	Biquad, Butterworth, Chebyshev N-order, M-channel optimized filters

	Butterworth Optimized C++ Class

	C++ class implementation of RBJ Filters

	C-Weighed Filter

	Cascaded resonant lp/hp filter

	Cool Sounding Lowpass With Decibel Measured Resonance

	DC filter

	Delphi Class implementation of the RBJ filters

	Digital RIAA equalization filter coefficients

	Direct Form II biquad

	Direct form II

	Fast Downsampling With Antialiasing

	Formant filter

	Frequency warped FIR lattice

	Hilbert Filter Coefficient Calculation

	Hiqh quality /2 decimators

	Karlsen

	Karlsen Fast Ladder

	LP and HP filter

	LPF 24dB/Oct

	Lowpass filter for parameter edge filtering

	MDCT and IMDCT based on FFTW3

	Moog Filter

	Moog VCF

	Moog VCF, variation 1

	Moog VCF, variation 2

	Notch filter

	One pole LP and HP

	One pole filter, LP and HP

	One pole, one zero LP/HP

	One zero, LP/HP

	One-Liner IIR Filters (1st order)

	Output Limiter using Envelope Follower in C++

	Peak/Notch filter

	Perfect LP4 filter

	Pink noise filter

	Plot Filter (Analyze filter characteristics)

	Plotting R B-J Equalisers in Excel

	Polyphase Filters

	Polyphase Filters (Delphi)

	Poor Man’s FIWIZ

	Prewarping

	RBJ Audio-EQ-Cookbook

	RBJ Audio-EQ-Cookbook

	Remez Exchange Algorithm (Parks/McClellan)

	Remez Remez (Parks/McClellan)

	Resonant IIR lowpass (12dB/oct)

	Resonant filter

	Resonant low pass filter

	Reverb Filter Generator

	Simple Tilt equalizer

	Simple biquad filter from apple.com

	Spuc’s open source filters

	State Variable Filter (Chamberlin version)

	State Variable Filter (Double Sampled, Stable)

	State variable

	Stilson’s Moog filter code

	Time domain convolution with O(n^log2(3))

	Time domain convolution with O(n^log2(3))

	Type : LPF 24dB/Oct

	Various Biquad filters

	Windowed Sinc FIR Generator

	Zoelzer biquad filters

1 pole LPF for smooth parameter changes

	Author or source: moc.liamg@odiugoiz

	Type: 1-pole LPF class

	Created: 2008-09-22 20:27:06

notes

This is a very simple class that I'm using in my plugins for smoothing parameter changes
that directly affect audio stream.
It's a 1-pole LPF, very easy on CPU.

Change the value of variable "a" (0~1) for slower or a faster response.

Of course you can also use it as a lowpass filter for audio signals.

code

	1
2
3
4
5
6
7
8
9

	class CParamSmooth
{
public:
 CParamSmooth() { a = 0.99f; b = 1.f - a; z = 0; };
 ~CParamSmooth();
 inline float Process(float in) { z = (in * b) + (z * a); return z; }
private:
 float a, b, z;
};

Comments

	Date: 2011-09-30 15:46:04

	By: moc.oohay@ygobatem

I've used this a lot, but here's an important thing: it won't work the same for multiple sample rates, so if you set a to 0.9995 for example, this will be lower if the sample rate is higher than you intended. I fix it by doing this:

/*must compensate this factor for sample rate change*/

float srCompensate;
srCompensate = sr/44100.0f;
float compensated_a;
compensated_a = powf(a, (1.0f/srCompensate));
 b = 1.0f-compensated_a;

Then if you start with a built in value (or range) designed for 44100hz, it will scale up with the sample rate so you will get the same amount of smoothing. I'm not sure if this is mathematically correct, but I came up with it very quickly and it works a charm for me.

Good work, very useful and easy to use filter.

	Date: 2011-09-30 15:47:29

	By: moc.oohay@ygobatem

*edit, a won't be LOWER if the sample rate changes, but it won't have the same effect.

	Date: 2014-12-16 12:14:59

	By: moc.liamg@earixela

New version, now you can specify the speed response of the parameter in ms. and sampling rate:

class CParamSmooth
{
public:
 CParamSmooth(float smoothingTimeInMs, float samplingRate)
 {
 const float c_twoPi = 6.283185307179586476925286766559f;

 a = exp(-c_twoPi / (smoothingTimeInMs * 0.001f * samplingRate));
 b = 1.0f - a;
 z = 0.0f;
 }

 ~CParamSmooth()
 {

 }

 inline float process(float in)
 {
 z = (in * b) + (z * a);
 return z;
 }

private:
 float a;
 float b;
 float z;
};

1-RC and C filter

	Author or source: ac.nortoediv@niarbdam

	Type: Simple 2-pole LP

	Created: 2004-11-14 22:42:18

notes

This filter is called 1-RC and C since it uses these two parameters. C and R correspond to
raw cutoff and inverted resonance, and have a range from 0 to 1.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	//Parameter calculation
//cutoff and resonance are from 0 to 127

 c = pow(0.5, (128-cutoff) / 16.0);
 r = pow(0.5, (resonance+24) / 16.0);

//Loop:

 v0 = (1-r*c)*v0 - (c)*v1 + (c)*input;
 v1 = (1-r*c)*v1 + (c)*v0;

 output = v1;

Comments

	Date: 2005-01-13 18:25:57

	By: yes

input is not in 0 - 1 range.

for cutoff i guess 128.

for reso the same ?

	Date: 2006-08-31 14:28:33

	By: uh.etle.fni@yfoocs

Nice. This is very similar to a state variable filter in many ways. Relationship between c and frequency:

c = 2*sin(pi*freq/samplerate)

You can approximate this (tuning error towards nyquist):

c = 2*pi*freq/samplerate

Relationship between r and q factor:

r = 1/q

This filter has stability issues for high r values. State variable filter stability limits seem to work fine here. It can also be oversampled for better stability and wider frequency range (use 0.5*original frequency):

//Loop:

v0 = (1-r*c)*v0 - c*v1 + c*input;
v1 = (1-r*c)*v1 + c*v0;
tmp = v1;

v0 = (1-r*c)*v0 - c*v1 + c*input;
v1 = (1-r*c)*v1 + c*v0;
output = (tmp+v1)*0.5;

-- peter schoffhauzer

18dB/oct resonant 3 pole LPF with tanh() dist

	Author or source: Josep M Comajuncosas

	Created: 2002-02-10 13:17:10

	Linked files: lpf18.zip.

	Linked files: lpf18.sme.

notes

Implementation in CSound and Sync Modular...

1st and 2nd order pink noise filters

	Author or source: moc.regnimmu@regnimmu

	Type: Pink noise

	Created: 2004-04-07 09:36:23

notes

Here are some new lower-order pink noise filter coefficients.

These have approximately equiripple error in decibels from 20hz to 20khz at a 44.1khz
sampling rate.

1st order, ~ +/- 3 dB error (not recommended!)
num = [0.05338071119116 -0.03752455712906]
den = [1.00000000000000 -0.97712493947102]

2nd order, ~ +/- 0.9 dB error
num = [0.04957526213389 -0.06305581334498 0.01483220320740]
den = [1.00000000000000 -1.80116083982126 0.80257737639225]

3 Band Equaliser

	Author or source: Neil C

	Created: 2006-08-29 20:34:25

notes

Simple 3 band equaliser with adjustable low and high frequencies ...

Fairly fast algo, good quality output (seems to be accoustically transparent with all
gains set to 1.0)

How to use ...

1. First you need to declare a state for your eq

 EQSTATE eq;

2. Now initialise the state (we'll assume your output frequency is 48Khz)

 set_3band_state(eq,880,5000,480000);

 Your EQ bands are now as follows (approximatley!)

 low band = 0Hz to 880Hz
 mid band = 880Hz to 5000Hz
 high band = 5000Hz to 24000Hz

3. Set the gains to some values ...

 eq.lg = 1.5; // Boost bass by 50%
 eq.mg = 0.75; // Cut mid by 25%
 eq.hg = 1.0; // Leave high band alone

4. You can now EQ some samples

 out_sample = do_3band(eq,in_sample)

Have fun and mail me if any problems ... etanza at lycos dot co dot uk

Neil C / Etanza Systems, 2006 :)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

	First the header file
//---
//
// 3 Band EQ :)
//
// EQ.H - Header file for 3 band EQ
//
// (c) Neil C / Etanza Systems / 2K6
//
// Shouts / Loves / Moans = etanza at lycos dot co dot uk
//
// This work is hereby placed in the public domain for all purposes, including
// use in commercial applications.
//
// The author assumes NO RESPONSIBILITY for any problems caused by the use of
// this software.
//
//--

#ifndef __EQ3BAND__
#define __EQ3BAND__

// ------------
//| Structures |
// ------------

typedef struct
{
 // Filter #1 (Low band)

 double lf; // Frequency
 double f1p0; // Poles ...
 double f1p1;
 double f1p2;
 double f1p3;

 // Filter #2 (High band)

 double hf; // Frequency
 double f2p0; // Poles ...
 double f2p1;
 double f2p2;
 double f2p3;

 // Sample history buffer

 double sdm1; // Sample data minus 1
 double sdm2; // 2
 double sdm3; // 3

 // Gain Controls

 double lg; // low gain
 double mg; // mid gain
 double hg; // high gain

} EQSTATE;

// ---------
//| Exports |
// ---------

extern void init_3band_state(EQSTATE* es, int lowfreq, int highfreq, int mixfreq);
extern double do_3band(EQSTATE* es, double sample);

#endif // #ifndef __EQ3BAND__
//---

Now the source ...
//--
//
// 3 Band EQ :)
//
// EQ.C - Main Source file for 3 band EQ
//
// (c) Neil C / Etanza Systems / 2K6
//
// Shouts / Loves / Moans = etanza at lycos dot co dot uk
//
// This work is hereby placed in the public domain for all purposes, including
// use in commercial applications.
//
// The author assumes NO RESPONSIBILITY for any problems caused by the use of
// this software.
//
//--

// NOTES :
//
// - Original filter code by Paul Kellet (musicdsp.pdf)
//
// - Uses 4 first order filters in series, should give 24dB per octave
//
// - Now with P4 Denormal fix :)

//--

// ----------
//| Includes |
// ----------

#include <math.h>
#include "eq.h"

// -----------
//| Constants |
// -----------

static double vsa = (1.0 / 4294967295.0); // Very small amount (Denormal Fix)

// ---------------
//| Initialise EQ |
// ---------------

// Recommended frequencies are ...
//
// lowfreq = 880 Hz
// highfreq = 5000 Hz
//
// Set mixfreq to whatever rate your system is using (eg 48Khz)

void init_3band_state(EQSTATE* es, int lowfreq, int highfreq, int mixfreq)
{
 // Clear state

 memset(es,0,sizeof(EQSTATE));

 // Set Low/Mid/High gains to unity

 es->lg = 1.0;
 es->mg = 1.0;
 es->hg = 1.0;

 // Calculate filter cutoff frequencies

 es->lf = 2 * sin(M_PI * ((double)lowfreq / (double)mixfreq));
 es->hf = 2 * sin(M_PI * ((double)highfreq / (double)mixfreq));
}

// ---------------
//| EQ one sample |
// ---------------

// - sample can be any range you like :)
//
// Note that the output will depend on the gain settings for each band
// (especially the bass) so may require clipping before output, but you
// knew that anyway :)

double do_3band(EQSTATE* es, double sample)
{
 // Locals

 double l,m,h; // Low / Mid / High - Sample Values

 // Filter #1 (lowpass)

 es->f1p0 += (es->lf * (sample - es->f1p0)) + vsa;
 es->f1p1 += (es->lf * (es->f1p0 - es->f1p1));
 es->f1p2 += (es->lf * (es->f1p1 - es->f1p2));
 es->f1p3 += (es->lf * (es->f1p2 - es->f1p3));

 l = es->f1p3;

 // Filter #2 (highpass)

 es->f2p0 += (es->hf * (sample - es->f2p0)) + vsa;
 es->f2p1 += (es->hf * (es->f2p0 - es->f2p1));
 es->f2p2 += (es->hf * (es->f2p1 - es->f2p2));
 es->f2p3 += (es->hf * (es->f2p2 - es->f2p3));

 h = es->sdm3 - es->f2p3;

 // Calculate midrange (signal - (low + high))

 m = es->sdm3 - (h + l);

 // Scale, Combine and store

 l *= es->lg;
 m *= es->mg;
 h *= es->hg;

 // Shuffle history buffer

 es->sdm3 = es->sdm2;
 es->sdm2 = es->sdm1;
 es->sdm1 = sample;

 // Return result

 return(l + m + h);
}

//--

Comments

	Date: 2007-03-28 03:33:04

	By: moc.mot@lx_iruy

Great Thanks!
I have one problem the below:
 double f2p0; // Poles ...
 double f2p1;
 double f2p2;
 double f2p3;
that I want to know the starting value
about f2p0,f2p1,...!

	Date: 2007-04-14 12:02:27

	By: moc.oohay@knuf_red_retavttog_nuarb_semaj

yuri:

The invocation of memset() during the initialization method sets all the the members of the struct to zero.

	Date: 2007-05-22 19:05:47

	By: moc.liamtoh@cnamlleh

This is great -- I want to develop a compressor/limiter/expander and have been looking long and hard for bandpass / eq filtering code. Here it is!

I am sure we could easily expand this into an x band eq.

Thanks!

	Date: 2007-07-05 06:49:45

	By: tom tom

Hi !

I've just transposed your code under Delphi.

It works well if the gain is under 1, but if i put gain > 1 i get clipping (annoying sound clips), even at 1.1;

Is it normal ?

I convert my smallint (44100 16 bits) to double before process, and convert the obtained value back to smallint with clipping (if < -32768 i set it to -32768, and if > 32768 i set it to 32768).

What did i do wrong ?

Regards

Tom

	Date: 2007-07-21 14:24:53

	By: ed.xmg@7trebreh

Hi.

Maybe the answer is quite easy. The upper limit is 32767 not 32768.

Regards

Herbert

	Date: 2007-08-23 02:39:23

	By: moc.oohay@3617100aggna

Hi, Can U send me a full source code for this 3 band state eq from start to end ??
Please !!!!
I really need it for my study in school.
I hope you can send me, to my email.

thanks you.
regard

angga

	Date: 2009-05-05 16:37:21

	By: moc.liamg@2156niahv

How can I expand this 3 Band EQ into X Band EQ..?!

Anybody answer me, or email me..

	Date: 2009-05-22 13:27:00

	By: moc.boohay@bob

For more bands, you could take the low-pass and repeat the process on that.

	Date: 2009-05-23 18:46:04

	By: moc.yabtsalb@pilihp

This is a great little filter, I am using it in an application but when I first started playing with it I noticed some problems. The mid range didn't seem to be calculated properly, a friend of mine who knows more about dsp than I do took a quick look at it and suggested the following change:

 m = es->sdm3 - (h + l);

Should be:

 m = sample - (h + l);

I've tested it with this small fix and everything works perfectly now. Just thought I'd bring this to your attention... Thanks for a great code snippet!

	Date: 2009-05-24 15:27:11

	By: moc.boohay@bob

What problems were you getting? Doesn't removing the delay cause phase problems?

	Date: 2009-06-25 10:34:44

	By: moc.limagy@ec.rahceb

Hi Great Stuff,

how to create 6 band equalizer, is any algorithm for 6 band same like 3 band, please help me if any one

thanks in advance

	Date: 2010-05-06 20:21:20

	By: moc.liamg@anesejiw

How to extend this to 6 band equalizer?

	Date: 2010-05-27 21:45:44

	By: moc.liamtoh@aanaibas_nairam

hello! thanks for your code!!
i tried to use the code in my project of guitar distortions in real time (in C) and i could'nt, i'm in linux using jack audio server, and it starts to have x-runs everytime i turn on the equalizer. do you any idea of how solving this? (from 5 to 50 milliseconds o x-runs)
i was thinking of coding it in assembler but i don't know if that would be the solution.
excuse me for my english, i'm from argentina and it's been a while since i last wrote in this language!
thanks in advance, hoping to see any answer!
mariano

	Date: 2010-11-03 14:19:25

	By: moc.oohay@56_drow

Dev c++ can not run it? any suggesstions, how to run it?

	Date: 2011-02-23 13:24:53

	By: moc.liamg@kniniurb.tnecniv

This example is exactly what i've been looking for. This little piece of code executes faster then the one I have been using before.

FYI,

I will use the code in a 3 band compressor / limiter / clipper for FM broadcasting.

Thanks for sharing.

Best regards,

Vincent Bruinink.

	Date: 2011-03-21 18:03:15

	By: moc.liamg@liamtsil.mtp

I've got this filtering audio on iOS by running my sample through do_3band in the render callback. However, I'm getting a fair amount of distortion. Here's an example with my EQ3Band gains all set to 1.0:

http://www.youtube.com/watch?v=W_6JaNUvUjA

Here's the code for my implementation:

https://github.com/tassock/mixerhost/commit/4b8b87028bfffe352ed67609f747858059a3e89b

I assume others using this aren't having this same distortion issue? If so, what sort of audio sample formats are you using (big/little endian, float/integer samples, etc). Thanks!

	Date: 2011-04-30 20:17:58

	By: moc.liamg@enohpi.senarab

hi,
I got also distorsion even though my all my gains are set to 1. Please help

Lucie

	Date: 2012-06-05 07:19:56

	By: moc.liamg@solbaidcod

 I've made an implementation of 3 band Equalizer to read a wave file,apply filtering and then save wave outputfile.
With your code I have a lot of distortion,I think the problem maybe coefficient calculation:

es->f1p0 += (es->lf * (sample - es->f1p0))+vsa ;
 ...

Can anyone resolve distortion?

	Date: 2013-01-11 16:43:12

	By: es.dnargvelk@nahoj

Works fine for me on iOS. Maybe you feed a interleaved stereo signal with the same EQSTATE instance (you'll need one EQSTATE for each channel)?

	Date: 2013-04-07 17:50:46

	By: ta.erehthgir@liameon

It's all about WHERE you init you EQ. Try a little :) If you don't find out yourself, I'll help you.

	Date: 2013-06-18 14:00:45

	By: moc.laimtoh@inaam_riamu

I added this code to my xcode project. But where i can pass the values and method. May be its funny question for you guyz but please help me. Its loking good to me but in xcode , i am using avaudio player for play sound and making sound app.
Thanks

	Date: 2013-07-01 23:07:05

	By: moc.liamg@iaznabi

The distortion will occur of you are trying to adapt this to stereo and do so by simply adding an outer loop per channel. Doing so will cause the filter values to compound and cause distortion. Instead, you will need to duplicate all the filter values and keep them separate from the other channel.

	Date: 2013-08-21 14:09:08

	By: moc.liamg@nurb.luap

Any good x-band equalizer equivalents for C# that I can use?

	Date: 2014-08-05 22:57:07

	By: ed.xmg@retsneum.ellak

s'cool thanks!
have portet to c#
works fine!

	Date: 2015-09-28 07:53:37

	By: az.oc.sseccadipar@sook

Converted Neil's C Code 3 band equalizer to Delphi class, for those who are interested.

1. Create instance of class
 Public
 eq:TEQ;

2. On form create

 eq := TEq.Create;

 //Initialize
 init_3band_state(880,5000,44100,50,-25,0);

 //init_3band_state(lowfreq,highfreq,mixfreq:integer;BassGain,MidGain,HighGain:Double);

3. process: pass Raw 16Bit PCM to eq

eq.Equalize(const Data: Pointer; DataSize: DWORD);

Works like a charm form me

 TEq=Class
 private
 lf,f1p0,f1p1,f1p2,f1p3:double;
 hf,f2p0,f2p1,f2p2,f2p3:double;
 sdm1,sdm2,sdm3:double;
 vsa:double;
 lg,mg,hg:double;
 Function do_3band(sample:Smallint):Smallint;
 public
 constructor create;
 destructor destroy;override;
 procedure init_3band_state(lowfreq,highfreq,mixfreq:integer;BassGain,MidGain,HighGain:Double);
 procedure Equalize(const Data: Pointer; DataSize: DWORD);
 end;

constructor TEQ.create;
begin
 inherited create;
 vsa := (1.0 / 4294967295.0);
 lg := 1.0;
 mg := 1.0;
 hg := 1.0;

end;

destructor TEQ.destroy;
begin
 inherited destroy;
end;

procedure TEQ.init_3band_state(lowfreq,highfreq,mixfreq:integer;BassGain,MidGain,HighGain:Double);
begin

 {(880,5000,44100,1.5,0.75,1.0)
 eq.lg = 1.5; // Boost bass by 50%
 eq.mg = 0.75; // Cut mid by 25%
 eq.hg = 1.0; // Leave high band alone }

 lg := 1+(BassGain/100);
 mg := 1+(MidGain/100);
 hg := 1+(HighGain/100);

// Calculate filter cutoff frequencies

 lf := 2 * sin(PI * (lowfreq / mixfreq));
 hf := 2 * sin(PI * (highfreq / mixfreq));
end;

Function TEQ.do_3band(sample:Smallint):Smallint;
var l,m,h:double;
 res:integer;
begin

// Filter #1 (lowpass)

 f1p0 := f1p0 + (lf * (sample - f1p0)) + vsa;
 f1p1 := f1p1 + (lf * (f1p0 - f1p1));
 f1p2 := f1p2 + (lf * (f1p1 - f1p2));
 f1p3 := f1p3 + (lf * (f1p2 - f1p3));

 l := f1p3;

// Filter #2 (highpass)

 f2p0 := f2p0 + (hf * (sample - f2p0)) + vsa;
 f2p1 := f2p1 + (hf * (f2p0 - f2p1));
 f2p2 := f2p2 + (hf * (f2p1 - f2p2));
 f2p3 := f2p3 + (hf * (f2p2 - f2p3));

 h := sdm3 - f2p3;

// Calculate midrange (signal - (low + high))

 m := sdm3 - (h + l);

// Scale, Combine and store

 l := l * lg;
 m := m * mg;
 h := h * hg;

// Shuffle history buffer

 sdm3 := sdm2;
 sdm2 := sdm1;
 sdm1 := sample;

// Return result
 res := trunc(l+m+h);
 if res > 32767 then res := 32767 else if res < -32768 then res := -32768;

 result := res;
end;

procedure TEQ.Equalize(const Data: Pointer; DataSize: DWORD);
var pSample: PSmallInt;
begin
 pSample := Data;
 while DataSize > 0 do
 begin
 pSample^ := do_3band(pSample^);
 Inc(pSample);
 Dec(DataSize, 2);
 end;
end;

303 type filter with saturation

	Author or source: Hans Mikelson

	Type: Runge-Kutta Filters

	Created: 2002-01-17 02:07:37

	Linked files: filters001.txt.

notes

I posted a filter to the Csound mailing list a couple of weeks ago that has a 303 flavor
to it. It basically does wacky distortions to the sound. I used Runge-Kutta for the diff
eq. simulation though which makes it somewhat sluggish.

This is a CSound score!!

4th order Linkwitz-Riley filters

	Author or source: moc.liamg@321tiloen

	Type: LP/HP - LR4

	Created: 2009-05-17 19:43:06

notes

Original from T. Lossius - ttblue project

Optimized version in pseudo-code.

[! The filter is unstable for fast automation changes in the lower frequency range.
Parameter interpolation and/or oversampling should fix this. !]

The sum of the Linkwitz-Riley (Butterworth squared) HP and LP outputs, will result an all-
pass filter at Fc and flat magnitude response - close to ideal for crossovers.

Lubomir I. Ivanov

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

	//---
// [code]
//---

//fc -> cutoff frequency
//pi -> 3.14285714285714
//srate -> sample rate

//==
// shared for both lp, hp; optimizations here
//==
wc=2*pi*fc;
wc2=wc*wc;
wc3=wc2*wc;
wc4=wc2*wc2;
k=wc/tan(pi*fc/srate);
k2=k*k;
k3=k2*k;
k4=k2*k2;
sqrt2=sqrt(2);
sq_tmp1=sqrt2*wc3*k;
sq_tmp2=sqrt2*wc*k3;
a_tmp=4*wc2*k2+2*sq_tmp1+k4+2*sq_tmp2+wc4;

b1=(4*(wc4+sq_tmp1-k4-sq_tmp2))/a_tmp;
b2=(6*wc4-8*wc2*k2+6*k4)/a_tmp;
b3=(4*(wc4-sq_tmp1+sq_tmp2-k4))/a_tmp;
b4=(k4-2*sq_tmp1+wc4-2*sq_tmp2+4*wc2*k2)/a_tmp;

//==
// low-pass
//==
a0=wc4/a_tmp;
a1=4*wc4/a_tmp;
a2=6*wc4/a_tmp;
a3=a1;
a4=a0;

//===
// high-pass
//===
a0=k4/a_tmp;
a1=-4*k4/a_tmp;
a2=6*k4/a_tmp;
a3=a1;
a4=a0;

//===
// sample loop - same for lp, hp
//===
tempx=input;

tempy=a0*tempx+a1*xm1+a2*xm2+a3*xm3+a4*xm4-b1*ym1-b2*ym2-b3*ym3-b4*ym4;
xm4=xm3;
xm3=xm2;
xm2=xm1;
xm1=tempx;
ym4=ym3;
ym3=ym2;
ym2=ym1;
ym1=tempy;

output=tempy;

Comments

	Date: 2009-05-29 11:09:50

	By: moc.liamg@321tiloen

LR2 with DFII:

//------------------------------
// LR2
// fc -> cutoff frequency
// pi -> 3.14285714285714
// srate -> sample rate
//------------------------------
fpi = pi*fc;
wc = 2*fpi;
wc2 = wc*wc;
wc22 = 2*wc2;
k = wc/tan(fpi/srate);
k2 = k*k;
k22 = 2*k2;
wck2 = 2*wc*k;
tmpk = (k2+wc2+wck2);
//b shared
b1 = (-k22+wc22)/tmpk;
b2 = (-wck2+k2+wc2)/tmpk;
//---------------
// low-pass
//---------------
a0_lp = (wc2)/tmpk;
a1_lp = (wc22)/tmpk;
a2_lp = (wc2)/tmpk;
//----------------
// high-pass
//----------------
a0_hp = (k2)/tmpk;
a1_hp = (-k22)/tmpk;
a2_hp = (k2)/tmpk;

//=========================
// sample loop, in -> input
//=========================
//---lp
lp_out = a0_lp*in + lp_xm0;
lp_xm0 = a1_lp*in - b1*lp_out + lp_xm1;
lp_xm1 = a2_lp*in - b2*lp_out;
//---hp
hp_out = a0_hp*in + hp_xm0;
hp_xm0 = a1_hp*in - b1*hp_out + hp_xm1;
hp_xm1 = a2_hp*in - b2*hp_out;

// the two are with 180 degrees phase shift,
// so you need to invert the phase of one.
out = lp_out + hp_out*(-1);

//result is allpass at Fc

	Date: 2011-07-13 11:48:20

	By: moc.kauqkiuq@evad

I've converted this Linkwits Riley 4 into intrinsics. It's set up with the cross over point and the sample rate. The function 'ProcessSplit' returns the low and high parts. It uses _mm_malloc to align the variables to 16 bytes, as putting them into the class as __m128 vars doesn't guarantee alignment.
Enjoy! :)

//---
//---
//---
//FIL_Linkwitz_Riley4.h

#pragma once

#include <xmmintrin.h>

class FIL_Linkwitz_Riley4
{
 __m128 *ab;
 __m128 *al;
 __m128 *ah;
 __m128 *xm;
 __m128 *yml;
 __m128 *ymh;

 float a0l;
 float a0h;

public:

 FIL_Linkwitz_Riley4::FIL_Linkwitz_Riley4(float fc, float srate);
 ~FIL_Linkwitz_Riley4();

 void ResetSplit();

 __inline void FIL_Linkwitz_Riley4::ProcessSplit(const float in, float &low, float &high)
 {
 __m128 m1;

 m1 = _mm_sub_ps(_mm_mul_ps(*al, *xm), _mm_mul_ps(*ab, *yml));
 low = a0l * in + m1.m128_f32[0] + m1.m128_f32[1] + m1.m128_f32[2] + m1.m128_f32[3];

 m1 = _mm_sub_ps(_mm_mul_ps(*ah, *xm), _mm_mul_ps(*ab, *ymh));
 high = a0h * in + m1.m128_f32[0] + m1.m128_f32[1] + m1.m128_f32[2] + m1.m128_f32[3];

 *xm = _mm_shuffle_ps(*xm, *xm, _MM_SHUFFLE(2,1,0,0));
 (*xm).m128_f32[0] = in;
 *yml = _mm_shuffle_ps(*yml, *yml, _MM_SHUFFLE(2,1,0,0));
 (*yml).m128_f32[0] = low;
 *ymh = _mm_shuffle_ps(*ymh, *ymh, _MM_SHUFFLE(2,1,0,0));
 (*ymh).m128_f32[0] = high;
 }

};

//---
//---
//---

// FIL_Linkwitz_Riley4.cpp

#include "FIL_Linkwitz_Riley4.h"
#include <math.h>

FIL_Linkwitz_Riley4::FIL_Linkwitz_Riley4(float fc, float srate)
{
 ab = (__m128*)_mm_malloc(16, 16);
 al = (__m128*)_mm_malloc(16, 16);
 ah = (__m128*)_mm_malloc(16, 16);
 xm = (__m128*)_mm_malloc(16, 16);
 yml = (__m128*)_mm_malloc(16, 16);
 ymh = (__m128*)_mm_malloc(16, 16);

 float wc = 2.0f * PI * fc;
 float wc2 = wc*wc;
 float wc3 = wc2*wc;
 float wc4 = wc2*wc2;
 float k = wc / tanf(PI * fc / srate);
 float k2 = k*k;
 float k3 = k2*k;
 float k4 = k2*k2;
 float sqrt2 = sqrtf(2.0f);
 float sq_tmp1 = sqrt2 *wc3 * k;
 float sq_tmp2 = sqrt2 *wc * k3;
 float a_tmp = 4.0f * wc2 * k2 + 2.0f * sq_tmp1 + k4 + 2.0f * sq_tmp2 + wc4;

 (*ab).m128_f32[0] = (4.0f *(wc4+sq_tmp1-k4-sq_tmp2))/a_tmp;
 (*ab).m128_f32[1] = (6.0f *wc4-8*wc2*k2+6*k4)/a_tmp;
 (*ab).m128_f32[2] = (4.0f *(wc4-sq_tmp1+sq_tmp2-k4))/a_tmp;
 (*ab).m128_f32[3] = (k4 -2.0f * sq_tmp1 + wc4 - 2.0f * sq_tmp2 + 4.0f * wc2 * k2) / a_tmp;

 //==
 // low-pass
 //==
 a0l = wc4/a_tmp;
 (*al).m128_f32[0] = 4.0f * wc4 / a_tmp;
 (*al).m128_f32[1] = 6.0f * wc4 / a_tmp;
 (*al).m128_f32[2] = (*al).m128_f32[0];
 (*al).m128_f32[3] = a0l;

 //===
 // high-pass
 //===
 a0h = k4 / a_tmp;
 (*ah).m128_f32[0] = -4.0f * k4 / a_tmp;
 (*ah).m128_f32[1] = 6.0f * k4 / a_tmp;
 (*ah).m128_f32[2] = (*ah).m128_f32[0];
 (*ah).m128_f32[3] = a0h;

 ResetSplit();
}

FIL_Linkwitz_Riley4::~FIL_Linkwitz_Riley4()
{
 _mm_free((void*)ab);
 _mm_free((void*)al);
 _mm_free((void*)ah);
 _mm_free((void*)xm);
 _mm_free((void*)yml);
 _mm_free((void*)ymh);
}

void FIL_Linkwitz_Riley4::ResetSplit()
{
 // Reset history...
 *xm = _mm_set1_ps(0.0f);
 *yml = _mm_set1_ps(0.0f);
 *ymh = _mm_set1_ps(0.0f);
}
//---
//---
//---

	Date: 2011-07-13 15:00:08

	By: moc.kauqkiuq@evad

I've no idea why I'm accessing those pointers like that! But never mind. :)

	Date: 2012-07-04 13:45:19

	By: ac.cisum-mutnauq@noidc

Your pi value is wrong:
pi -> 3.14285714285714

It should be 3.1415692 ect.

	Date: 2012-12-31 15:10:16

	By: moc.kauqkiuq@evad

Or even 3.1415926535!
LOL.

	Date: 2013-07-29 09:35:15

	By: moc.snoitcudorpnrec@mij

I don't think this is unstable for changes in frequency. It's unstable for low frequencies.

Here's my implementation.

#include <iostream>
#include <stdio.h>
#include <math.h>
#include <assert.h>

class LRCrossoverFilter { // LR4 crossover filter
private:
 struct filterCoefficents {
 float a0, a1, a2, a3, a4;
 } lpco, hpco;

 float b1co, b2co, b3co, b4co;

 struct {
 float xm1 = 0.0f;
 float xm2 = 0.0f;
 float xm3 = 0.0f;
 float xm4 = 0.0f;
 float ym1 = 0.0f, ym2 = 0.0f, ym3 = 0.0f, ym4 = 0.0f;
 } hptemp, lptemp;

 float coFreqRunningAv = 100.0f;
public:
 void setup(float crossoverFrequency, float sr);
 void processBlock(float * in, float * outHP, float * outLP, int numSamples);
 void dumpCoefficents(struct filterCoefficents x) {
 std::cout << "a0: " << x.a0 << "\n";
 std::cout << "a1: " << x.a1 << "\n";
 std::cout << "a2: " << x.a2 << "\n";
 std::cout << "a3: " << x.a3 << "\n";
 std::cout << "a4: " << x.a4 << "\n";
 }
 void dumpInformation() {
 std::cout << "-----\nfrequency: "<< coFreqRunningAv << "\n";
 std::cout << "lpco:\n";
 dumpCoefficents(lpco);
 std::cout << "hpco:\n";
 dumpCoefficents(hpco);
 std::cout << "bco:\nb1: ";
 std::cout << b1co << "\nb2: " << b2co << "\nb3: " << b3co << "\nb4: " << b4co << "\n";
 }

};

void LRCrossoverFilter::setup(float crossoverFrequency, float sr) {

 const float pi = 3.141f;

 coFreqRunningAv = crossoverFrequency;

 float cowc=2*pi*coFreqRunningAv;
 float cowc2=cowc*cowc;
 float cowc3=cowc2*cowc;
 float cowc4=cowc2*cowc2;

 float cok=cowc/tan(pi*coFreqRunningAv/sr);
 float cok2=cok*cok;
 float cok3=cok2*cok;
 float cok4=cok2*cok2;
 float sqrt2=sqrt(2);
 float sq_tmp1 = sqrt2 * cowc3 * cok;
 float sq_tmp2 = sqrt2 * cowc * cok3;
 float a_tmp = 4*cowc2*cok2 + 2*sq_tmp1 + cok4 + 2*sq_tmp2+cowc4;

 b1co=(4*(cowc4+sq_tmp1-cok4-sq_tmp2))/a_tmp;

 b2co=(6*cowc4-8*cowc2*cok2+6*cok4)/a_tmp;

 b3co=(4*(cowc4-sq_tmp1+sq_tmp2-cok4))/a_tmp;

 b4co=(cok4-2*sq_tmp1+cowc4-2*sq_tmp2+4*cowc2*cok2)/a_tmp;

 //==
 // low-pass
 //==
 lpco.a0=cowc4/a_tmp;
 lpco.a1=4*cowc4/a_tmp;
 lpco.a2=6*cowc4/a_tmp;
 lpco.a3=lpco.a1;
 lpco.a4=lpco.a0;

 //===
 // high-pass
 //===
 hpco.a0=cok4/a_tmp;
 hpco.a1=-4*cok4/a_tmp;
 hpco.a2=6*cok4/a_tmp;
 hpco.a3=hpco.a1;
 hpco.a4=hpco.a0;

}

void LRCrossoverFilter::processBlock(float * in, float * outHP, float * outLP, int numSamples) {

 float tempx, tempy;
 for (int i = 0; i<numSamples; i++) {
 tempx=in[i];

 // High pass

 tempy = hpco.a0*tempx +
 hpco.a1*hptemp.xm1 +
 hpco.a2*hptemp.xm2 +
 hpco.a3*hptemp.xm3 +
 hpco.a4*hptemp.xm4 -
 b1co*hptemp.ym1 -
 b2co*hptemp.ym2 -
 b3co*hptemp.ym3 -
 b4co*hptemp.ym4;

 hptemp.xm4=hptemp.xm3;
 hptemp.xm3=hptemp.xm2;
 hptemp.xm2=hptemp.xm1;
 hptemp.xm1=tempx;
 hptemp.ym4=hptemp.ym3;
 hptemp.ym3=hptemp.ym2;
 hptemp.ym2=hptemp.ym1;
 hptemp.ym1=tempy;
 outHP[i]=tempy;

 assert(tempy<10000000);

 // Low pass

 tempy = lpco.a0*tempx +
 lpco.a1*lptemp.xm1 +
 lpco.a2*lptemp.xm2 +
 lpco.a3*lptemp.xm3 +
 lpco.a4*lptemp.xm4 -
 b1co*lptemp.ym1 -
 b2co*lptemp.ym2 -
 b3co*lptemp.ym3 -
 b4co*lptemp.ym4;

 lptemp.xm4=lptemp.xm3; // these are the same as hptemp and could be optimised away
 lptemp.xm3=lptemp.xm2;
 lptemp.xm2=lptemp.xm1;
 lptemp.xm1=tempx;
 lptemp.ym4=lptemp.ym3;
 lptemp.ym3=lptemp.ym2;
 lptemp.ym2=lptemp.ym1;
 lptemp.ym1=tempy;
 outLP[i] = tempy;

 assert(!isnan(outLP[i]));
 }
}

int main () {
 LRCrossoverFilter filter;
 float data[2000];
 float lp[2000], hp[2000];

 filter.setup(50.0, 44100.0f);
 filter.dumpInformation();

 for (int i = 0; i<2000; i++) {
 data[i] = sinf(i/100.f);
 }
 filter.processBlock(data, hp, lp, 2000);

}

I'll try and fix it, but this kind of work is new to me, so all suggestions appreciated (Including "You Fool, you've copied the code wrong"). cheers!

	Date: 2013-09-03 22:35:23

	By: ku.oc.9f.yrreksirhc@kc

I tried this code for a crossover - firstly the SSE intrinsics version then the full original version. Both have problems with the HPF output.
With a crossover frequency of 200Hz and a pure sine tone input (any pitch) I get loud (-16dBFS)low frequency noise in the HPF output. This noise level reduces as the crossover frequency increases but it is unusable in its current state.
Can anyone post a solution for this problem?
Thanks.....Chris

	Date: 2013-09-04 10:37:34

	By: ku.oc.9f.yrreksirhc@kc

I also tried the LR2 code, this works better but there is still low frequency noise (-56dBFS & Xover 200Hz) in the HPF output.
Seems there is a fundamental problem with the HPF coefficients in this code :(
The LF Noise for both LR2 and LR4 appears to be a modulating DC offset - maybe that can guide the Filter Gurus to identify and solve the problem.
Cheers.....Chris

	Date: 2020-05-25 01:45:00

	By: enummusic

In my experience, simply changing all the variables used in LRCrossoverFilter::setup() and processBlock() to doubles is sufficient to reduce/eliminate noise, thanks to an idea from here: https://www.musicdsp.org/en/latest/Filters/232-type-lpf-24db-oct.html
"It turns out, that the filter is only unstable if the coefficient/state precision isn't high enough. Using double instead of single precision already makes it a lot more stable."

All-Pass Filters, a good explanation

	Author or source: Olli Niemitalo

	Type: information

	Created: 2002-01-17 02:08:11

	Linked files: filters002.txt.

Another 4-pole lowpass…

	Author or source: ten.xmg@zlipzzuf

	Type: 4-pole LP/HP

	Created: 2004-09-06 08:40:52

notes

Vaguely based on the Stilson/Smith Moog paper, but going in a rather different direction
from others I've seen here.

The parameters are peak frequency and peak magnitude (g below); both are reasonably
accurate for magnitudes above 1. DC gain is 1.

The filter has some undesirable properties - e.g. it's unstable for low peak freqs if
implemented in single precision (haven't been able to cleanly separate it into biquads or
onepoles to see if that helps), and it responds so strongly to parameter changes that it's
not advisable to update the coefficients much more rarely than, say, every eight samples
during sweeps, which makes it somewhat expensive.

I like the sound, however, and the accuracy is nice to have, since many filters are not
very strong in that respect.

I haven't looked at the HP again for a while, but IIRC it had approximately the same good
and bad sides.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

	double coef[9];
double d[4];
double omega; //peak freq
double g; //peak mag

// calculating coefficients:

double k,p,q,a;
double a0,a1,a2,a3,a4;

k=(4.0*g-3.0)/(g+1.0);
p=1.0-0.25*k;p*=p;

// LP:
a=1.0/(tan(0.5*omega)*(1.0+p));
p=1.0+a;
q=1.0-a;

a0=1.0/(k+p*p*p*p);
a1=4.0*(k+p*p*p*q);
a2=6.0*(k+p*p*q*q);
a3=4.0*(k+p*q*q*q);
a4= (k+q*q*q*q);
p=a0*(k+1.0);

coef[0]=p;
coef[1]=4.0*p;
coef[2]=6.0*p;
coef[3]=4.0*p;
coef[4]=p;
coef[5]=-a1*a0;
coef[6]=-a2*a0;
coef[7]=-a3*a0;
coef[8]=-a4*a0;

// or HP:
a=tan(0.5*omega)/(1.0+p);
p=a+1.0;
q=a-1.0;

a0=1.0/(p*p*p*p+k);
a1=4.0*(p*p*p*q-k);
a2=6.0*(p*p*q*q+k);
a3=4.0*(p*q*q*q-k);
a4= (q*q*q*q+k);
p=a0*(k+1.0);

coef[0]=p;
coef[1]=-4.0*p;
coef[2]=6.0*p;
coef[3]=-4.0*p;
coef[4]=p;
coef[5]=-a1*a0;
coef[6]=-a2*a0;
coef[7]=-a3*a0;
coef[8]=-a4*a0;

// per sample:

out=coef[0]*in+d[0];
d[0]=coef[1]*in+coef[5]*out+d[1];
d[1]=coef[2]*in+coef[6]*out+d[2];
d[2]=coef[3]*in+coef[7]*out+d[3];
d[3]=coef[4]*in+coef[8]*out;

Comments

	Date: 2005-04-04 20:39:55

	By: ed.luosfosruoivas@naitsirhC

Yet untested object pascal translation:

unit T4PoleUnit;

interface

type TFilterType=(ftLowPass, ftHighPass);
 T4Pole=class(TObject)
 private
 fGain : Double;
 fFreq : Double;
 fSR : Single;
 protected
 fCoeffs : array[0..8] of Double;
 d : array[0..3] of Double;
 fFilterType : TFilterType;
 procedure SetGain(s:Double);
 procedure SetFrequency(s:Double);
 procedure SetFilterType(v:TFilterType);
 procedure Calc;
 public
 constructor Create;
 function Process(s:single):single;
 published
 property Gain: Double read fGain write SetGain;
 property Frequency: Double read fFreq write SetFrequency;
 property SampleRate: Single read fSR write fSR;
 property FilterType: TFilterType read fFilterType write SetFilterType;
 end;

implementation

uses math;

const kDenorm = 1.0e-25;

constructor T4Pole.Create;
begin
 inherited create;
 fFreq:=1000;
 fSR:=44100;
 Calc;
end;

procedure T4Pole.SetFrequency(s:Double);
begin
 fFreq:=s;
 Calc;
end;

procedure T4Pole.SetGain(s:Double);
begin
 fGain:=s;
 Calc;
end;

procedure T4Pole.SetFilterType(v:TFilterType);
begin
 fFilterType:=v;
 Calc;
end;

procedure T4Pole.Calc;
var k,p,q,b,s : Double;
 a : array[0..4] of Double;
begin
 fGain:=1;
 if fFilterType=ftLowPass
 then s:=1
 else s:=-1;
 // calculating coefficients:
 k:=(4.0*fGain-3.0)/(fGain+1.0);
 p:=1.0-0.25*k;
 p:=p*p;

 if fFilterType=ftLowPass
 then b:=1.0/(tan(pi*fFreq/fSR)*(1.0+p))
 else b:=tan(pi*fFreq/fSR)/(1.0+p);
 p:=1.0+b;
 q:=s*(1.0-b);

 a[0] := 1.0/(k+p*p*p*p);
 a[1] := 4.0*(s*k+p*p*p*q);
 a[2] := 6.0*(k+p*p*q*q);
 a[3] := 4.0*(s*k+p*q*q*q);
 a[4] := (k+q*q*q*q);
 p := a[0]*(k+1.0);

 fCoeffs[0]:=p;
 fCoeffs[1]:=4.0*p*s;
 fCoeffs[2]:=6.0*p;
 fCoeffs[3]:=4.0*p*s;
 fCoeffs[4]:=p;
 fCoeffs[5]:=-a[1]*a[0];
 fCoeffs[6]:=-a[2]*a[0];
 fCoeffs[7]:=-a[3]*a[0];
 fCoeffs[8]:=-a[4]*a[0];
end;

function T4Pole.Process(s:single):single;
begin
 Result:=fCoeffs[0]*s+d[0];
 d[0]:=fCoeffs[1]*s+fCoeffs[5]*Result+d[1];
 d[1]:=fCoeffs[2]*s+fCoeffs[6]*Result+d[2];
 d[2]:=fCoeffs[3]*s+fCoeffs[7]*Result+d[3];
 d[3]:=fCoeffs[4]*s+fCoeffs[8]*Result;
end;

end.

	Date: 2015-03-19 19:24:23

	By: ed.xmg@0891retep_repus

so bad that this filter is so unstable. i tested it and is has a really nice sound. but frequencies below 200 hz are not possible. :-(

Bass Booster

	Author or source: Johny Dupej

	Type: LP and SUM

	Created: 2006-08-11 12:47:34

notes

This function adds a low-passed signal to the original signal. The low-pass has a quite
wide response.

Params:
selectivity - frequency response of the LP (higher value gives a steeper one) [70.0 to
140.0 sounds good]
ratio - how much of the filtered signal is mixed to the original
gain2 - adjusts the final volume to handle cut-offs (might be good to set dynamically)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	#define saturate(x) __min(__max(-1.0,x),1.0)

float BassBoosta(float sample)
{
static float selectivity, gain1, gain2, ratio, cap;
gain1 = 1.0/(selectivity + 1.0);

cap= (sample + cap*selectivity)*gain1;
sample = saturate((sample + cap*ratio)*gain2);

return sample;
}

Biquad C code

	Author or source: Tom St Denis

	Created: 2002-02-10 12:33:52

	Linked files: biquad.c.

notes

Implementation of the RBJ cookbook, in C.

Biquad, Butterworth, Chebyshev N-order, M-channel optimized filters

	Author or source: moc.oohay@nniveht

	Type: LP, HP, BP, BS, Shelf, Notch, Boost

	Created: 2009-11-16 08:46:34

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506

	/*

"A Collection of Useful C++ Classes for Digital Signal Processing"
By Vincent Falco

Please direct all comments to either the music-dsp mailing list or
the DSP and Plug-in Development forum:

 http://music.columbia.edu/cmc/music-dsp/

 http://www.kvraudio.com/forum/viewforum.php?f=33
 http://www.kvraudio.com/forum/

Support is provided for performing N-order Dsp floating point filter
operations on M-channel data with a caller specified floating point type.
The implementation breaks a high order IIR filter down into a series of
cascaded second order stages. Tests conclude that numerical stability is
maintained even at higher orders. For example the Butterworth low pass
filter is stable at up to 53 poles.

Processing functions are provided to use either Direct Form I or Direct
Form II of the filter transfer function. Direct Form II is slightly faster
but can cause discontinuities in the output if filter parameters are changed
during processing. Direct Form I is slightly slower, but maintains fidelity
even when parameters are changed during processing.

To support fast parameter changes, filters provide two functions for
adjusting parameters. A high accuracy Setup() function, and a faster
form called SetupFast() that uses approximations for trigonometric
functions. The approximations work quite well and should be suitable for
most applications.

Channels are stored in an interleaved format with M samples per frame
arranged contiguously. A single class instance can process all M channels
simultaneously in an efficient manner. A 'skip' parameter causes the
processing function to advance by skip additional samples in the destination
buffer in between every frame. Through manipulation of the skip paramter it
is possible to exclude channels from processing (for example, only processing
the left half of stereo interleaved data). For multichannel data which is
not interleaved, it will be necessary to instantiate multiple instance of
the filter and set skip=0.

There are a few other utility classes and functions included that may prove useful.

Classes:

Complex
CascadeStages
 Biquad
 BiquadLowPass
 BiquadHighPass
 BiquadBandPass1
 BiquadBandPass2
 BiquadBandStop
 BiquadAllPass
 BiquadPeakEq
 BiquadLowShelf
 BiquadHighShelf
 PoleFilter
 Butterworth
 ButterLowPass
 ButterHighPass
 ButterBandPass
 ButterBandStop
 Chebyshev1
 Cheby1LowPass
 Cheby1HighPass
 Cheby1BandPass
 Cheby1BandStop
 Chebyshev2
 Cheby2LowPass
 Cheby2HighPass
 Cheby2BandPass
 Cheby2BandStop
EnvelopeFollower
AutoLimiter

Functions:

 zero()
 copy()
 mix()
 scale()

 interleave()
 deinterleave()

Order for PoleFilter derived classes is specified in the number of poles,
except for band pass and band stop filters, for which the number of pole pairs
is specified.

For some filters there are two versions of Setup(), the one called
SetupFast() uses approximations to trigonometric functions for speed.
This is an option if you are doing frequent parameter changes to the filter.

There is an example function at the bottom that shows how to use the classes.

Filter ideas are based on a java applet (http://www.falstad.com/dfilter/)
developed by Paul Falstad.

All of this code was written by the author Vincent Falco except where marked.

--

License: MIT License (http://www.opensource.org/licenses/mit-license.php)
Copyright (c) 2009 by Vincent Falco

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
 *
 */
/*
 To Do:

 - Shelving, peak, all-pass for Butterworth, Chebyshev, and Elliptic.

 The Biquads have these versions and I would like the others to have them
 as well. It would also be super awesome if higher order filters could
 have a "Q" parameter for resonance but I'm not expecting miracles, it
 would require redistributing the poles and zeroes. But if there's
 a research paper or code out there...I could incorporate it.

 - Denormal testing and fixing

 I'd like to know if denormals are a problem. And if so, it would be nice
 to have a small function that can reproduce the denormal problem. This
 way I can test the fix under all conditions. I will include the function
 as a "unit test" object in the header file so anyone can verify its
 correctness. But I'm a little lost.

 - Optimized template specializations for stages=1, channels={1,2}

 There are some pretty obvious optimizations I am saving for "the end".
 I don't want to do them until the code is finalized.

 - Optimized template specializations for SSE, other special instructions

 - Optimized trigonometric functions for fast parameter changes

 - Elliptic curve based filter coefficients

 - More utility functions for manipulating sample buffers

 - Need fast version of pow(10, x)
*/

#ifndef __DSP_FILTER__
#define __DSP_FILTER__

#include <cmath>
#include <cfloat>
#include <assert.h>
#include <memory.h>
#include <stdlib.h>

//#define DSP_USE_STD_COMPLEX

#ifdef DSP_USE_STD_COMPLEX
#include <complex>
#endif

#define DSP_SSE3_OPTIMIZED

#ifdef DSP_SSE3_OPTIMIZED
 //#include <xmmintrin.h>
 //#include <emmintrin.h>
 #include <pmmintrin.h>
#endif

namespace Dsp
{
 //--
 // WARNING: Here there be templates
 //--

 //--
 //
 // Configuration
 //
 //--

 // Regardless of the type of sample that the filter operates on (e.g.
 // float or double), all calculations are performed using double (or
 // better) for stability and accuracy. This controls the underlying
 // type used for calculations:
 typedef double CalcT;

 typedef int Int32; // Must be 32 bits
 typedef __int64 Int64; // Must be 64 bits

 // This is used to prevent denormalization.
 const CalcT vsa=1.0 / 4294967295.0; // for CalcT as float

 // These constants are so important, I made my own copy. If you improve
 // the resolution of CalcT be sure to add more significant digits to these.
 const CalcT kPi =3.1415926535897932384626433832795;
 const CalcT kPi_2 =1.57079632679489661923;
 const CalcT kLn2 =0.693147180559945309417;
 const CalcT kLn10 =2.30258509299404568402;

 //--

 // Some functions missing from <math.h>
 template<typename T>
 inline T acosh(T x)
 {
 return log(x+::sqrt(x*x-1));
 }

 //--
 //
 // Fast Trigonometric Functions
 //
 //--

 // Three approximations for both sine and cosine at a given angle.
 // The faster the routine, the larger the error.
 // From http://lab.polygonal.de/2007/07/18/fast-and-accurate-sinecosine-approximation/

 // Tuned for maximum pole stability. r must be in the range 0..pi
 // This one breaks down considerably at the higher angles. It is
 // included only for educational purposes.
 inline void fastestsincos(CalcT r, CalcT *sn, CalcT *cs)
 {
 const CalcT c=0.70710678118654752440; // sqrt(2)/2
 CalcT v=(2-4*c)*r*r+c;
 if(r<kPi_2)
 {
 *sn=v+r; *cs=v-r;
 }
 else
 {
 *sn=r+v; *cs=r-v;
 }
 }

 // Lower precision than ::fastsincos() but still decent
 inline void fastersincos(CalcT x, CalcT *sn, CalcT *cs)
 {
 //always wrap input angle to -PI..PI
 if (x < -kPi) x += 2*kPi;
 else if (x > kPi) x -= 2*kPi;
 //compute sine
 if (x < 0) *sn = 1.27323954 * x + 0.405284735 * x * x;
 else *sn = 1.27323954 * x - 0.405284735 * x * x;
 //compute cosine: sin(x + PI/2) = cos(x)
 x += kPi_2;
 if (x > kPi) x -= 2*kPi;
 if (x < 0) *cs = 1.27323954 * x + 0.405284735 * x * x;
 else *cs = 1.27323954 * x - 0.405284735 * x * x;
 }

 // Slower than ::fastersincos() but still faster than
 // sin(), and with the best accuracy of these routines.
 inline void fastsincos(CalcT x, CalcT *sn, CalcT *cs)
 {
 CalcT s, c;
 //always wrap input angle to -PI..PI
 if (x < -kPi) x += 2*kPi;
 else if (x > kPi) x -= 2*kPi;
 //compute sine
 if (x < 0)
 {
 s = 1.27323954 * x + .405284735 * x * x;
 if (s < 0) s = .225 * (s * -s - s) + s;
 else s = .225 * (s * s - s) + s;
 }
 else
 {
 s = 1.27323954 * x - 0.405284735 * x * x;
 if (s < 0) s = .225 * (s * -s - s) + s;
 else s = .225 * (s * s - s) + s;
 }
 *sn=s;
 //compute cosine: sin(x + PI/2) = cos(x)
 x += kPi_2;
 if (x > kPi) x -= 2*kPi;
 if (x < 0)
 {
 c = 1.27323954 * x + 0.405284735 * x * x;
 if (c < 0) c = .225 * (c * -c - c) + c;
 else c = .225 * (c * c - c) + c;
 }
 else
 {
 c = 1.27323954 * x - 0.405284735 * x * x;
 if (c < 0) c = .225 * (c * -c - c) + c;
 else c = .225 * (c * c - c) + c;
 }
 *cs=c;
 }

 // Faster approximations to sqrt()
 // From http://ilab.usc.edu/wiki/index.php/Fast_Square_Root
 // The faster the routine, the more error in the approximation.

 // Log Base 2 Approximation
 // 5 times faster than sqrt()

 inline float fastsqrt1(float x)
 {
 union { Int32 i; float x; } u;
 u.x = x;
 u.i = (Int32(1)<<29) + (u.i >> 1) - (Int32(1)<<22);
 return u.x;
 }

 inline double fastsqrt1(double x)
 {
 union { Int64 i; double x; } u;
 u.x = x;
 u.i = (Int64(1)<<61) + (u.i >> 1) - (Int64(1)<<51);
 return u.x;
 }

 // Log Base 2 Approximation with one extra Babylonian Step
 // 2 times faster than sqrt()

 inline float fastsqrt2(float x)
 {
 float v=fastsqrt1(x);
 v = 0.5f * (v + x/v); // One Babylonian step
 return v;
 }

 inline double fastsqrt2(const double x)
 {
 double v=fastsqrt1(x);
 v = 0.5f * (v + x/v); // One Babylonian step
 return v;
 }

 // Log Base 2 Approximation with two extra Babylonian Steps
 // 50% faster than sqrt()

 inline float fastsqrt3(float x)
 {
 float v=fastsqrt1(x);
 v = v + x/v;
 v = 0.25f* v + x/v; // Two Babylonian steps
 return v;
 }

 inline double fastsqrt3(const double x)
 {
 double v=fastsqrt1(x);
 v = v + x/v;
 v = 0.25 * v + x/v; // Two Babylonian steps
 return v;
 }

 //--
 //
 // Complex
 //
 //--

#ifdef DSP_USE_STD_COMPLEX

 template<typename T>
 inline std::complex<T> polar(const T &m, const T &a)
 {
 return std::polar(m, a);
 }

 template<typename T>
 inline T norm(const std::complex<T> &c)
 {
 return std::norm(c);
 }

 template<typename T>
 inline T abs(const std::complex<T> &c)
 {
 return std::abs(c);
 }

 template<typename T, typename To>
 inline std::complex<T> addmul(const std::complex<T> &c, T v, const std::complex<To> &c1)
 {
 return std::complex<T>(c.real()+v*c1.real(), c.imag()+v*c1.imag());
 }

 template<typename T>
 inline T arg(const std::complex<T> &c)
 {
 return std::arg(c);
 }

 template<typename T>
 inline std::complex<T> recip(const std::complex<T> &c)
 {
 T n=1.0/Dsp::norm(c);
 return std::complex<T>(n*c.real(), n*c.imag());
 }
 template<typename T>
 inline std::complex<T> sqrt(const std::complex<T> &c)
 {
 return std::sqrt(c);
 }

 typedef std::complex<CalcT> Complex;

#else

 //--

 // "Its always good to have a few extra wheels in case one goes flat."

 template<typename T>
 struct ComplexT
 {
 ComplexT();
 ComplexT(T r_, T i_=0);

 template<typename To>
 ComplexT(const ComplexT<To> &c);

 T imag (void) const;
 T real (void) const;

 ComplexT & neg (void);
 ComplexT & conj (void);

 template<typename To>
 ComplexT & add (const ComplexT<To> &c);
 template<typename To>
 ComplexT & sub (const ComplexT<To> &c);
 template<typename To>
 ComplexT & mul (const ComplexT<To> &c);
 template<typename To>
 ComplexT & div (const ComplexT<To> &c);
 template<typename To>
 ComplexT & addmul (T v, const ComplexT<To> &c);

 ComplexT operator- (void) const;

 ComplexT operator+ (T v) const;
 ComplexT operator- (T v) const;
 ComplexT operator* (T v) const;
 ComplexT operator/ (T v) const;

 ComplexT & operator+= (T v);
 ComplexT & operator-= (T v);
 ComplexT & operator*= (T v);
 ComplexT & operator/= (T v);

 template<typename To>
 ComplexT operator+ (const ComplexT<To> &c) const;
 template<typename To>
 ComplexT operator- (const ComplexT<To> &c) const;
 template<typename To>
 ComplexT operator* (const ComplexT<To> &c) const;
 template<typename To>
 ComplexT operator/ (const ComplexT<To> &c) const;

 template<typename To>
 ComplexT & operator+= (const ComplexT<To> &c);
 template<typename To>
 ComplexT & operator-= (const ComplexT<To> &c);
 template<typename To>
 ComplexT & operator*= (const ComplexT<To> &c);
 template<typename To>
 ComplexT & operator/= (const ComplexT<To> &c);

 private:
 ComplexT & add (T v);
 ComplexT & sub (T v);
 ComplexT & mul (T c, T d);
 ComplexT & mul (T v);
 ComplexT & div (T v);

 T r;
 T i;
 };

 //--

 template<typename T>
 inline ComplexT<T>::ComplexT()
 {
 }

 template<typename T>
 inline ComplexT<T>::ComplexT(T r_, T i_)
 {
 r=r_;
 i=i_;
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T>::ComplexT(const ComplexT<To> &c)
 {
 r=c.r;
 i=c.i;
 }

 template<typename T>
 inline T ComplexT<T>::imag(void) const
 {
 return i;
 }

 template<typename T>
 inline T ComplexT<T>::real(void) const
 {
 return r;
 }

 template<typename T>
 inline ComplexT<T> &ComplexT<T>::neg(void)
 {
 r=-r;
 i=-i;
 return *this;
 }

 template<typename T>
 inline ComplexT<T> &ComplexT<T>::conj(void)
 {
 i=-i;
 return *this;
 }

 template<typename T>
 inline ComplexT<T> &ComplexT<T>::add(T v)
 {
 r+=v;
 return *this;
 }

 template<typename T>
 inline ComplexT<T> &ComplexT<T>::sub(T v)
 {
 r-=v;
 return *this;
 }

 template<typename T>
 inline ComplexT<T> &ComplexT<T>::mul(T c, T d)
 {
 T ac=r*c;
 T bd=i*d;
 // must do i first
 i=(r+i)*(c+d)-(ac+bd);
 r=ac-bd;
 return *this;
 }

 template<typename T>
 inline ComplexT<T> &ComplexT<T>::mul(T v)
 {
 r*=v;
 i*=v;
 return *this;
 }

 template<typename T>
 inline ComplexT<T> &ComplexT<T>::div(T v)
 {
 r/=v;
 i/=v;
 return *this;
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T> &ComplexT<T>::add(const ComplexT<To> &c)
 {
 r+=c.r;
 i+=c.i;
 return *this;
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T> &ComplexT<T>::sub(const ComplexT<To> &c)
 {
 r-=c.r;
 i-=c.i;
 return *this;
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T> &ComplexT<T>::mul(const ComplexT<To> &c)
 {
 return mul(c.r, c.i);
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T> &ComplexT<T>::div(const ComplexT<To> &c)
 {
 T s=1.0/norm(c);
 return mul(c.r*s, -c.i*s);
 }

 template<typename T>
 inline ComplexT<T> ComplexT<T>::operator-(void) const
 {
 return ComplexT<T>(*this).neg();
 }

 template<typename T>
 inline ComplexT<T> ComplexT<T>::operator+(T v) const
 {
 return ComplexT<T>(*this).add(v);
 }

 template<typename T>
 inline ComplexT<T> ComplexT<T>::operator-(T v) const
 {
 return ComplexT<T>(*this).sub(v);
 }

 template<typename T>
 inline ComplexT<T> ComplexT<T>::operator*(T v) const
 {
 return ComplexT<T>(*this).mul(v);
 }

 template<typename T>
 inline ComplexT<T> ComplexT<T>::operator/(T v) const
 {
 return ComplexT<T>(*this).div(v);
 }

 template<typename T>
 inline ComplexT<T> &ComplexT<T>::operator+=(T v)
 {
 return add(v);
 }

 template<typename T>
 inline ComplexT<T> &ComplexT<T>::operator-=(T v)
 {
 return sub(v);
 }

 template<typename T>
 inline ComplexT<T> &ComplexT<T>::operator*=(T v)
 {
 return mul(v);
 }

 template<typename T>
 inline ComplexT<T> &ComplexT<T>::operator/=(T v)
 {
 return div(v);
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T> ComplexT<T>::operator+(const ComplexT<To> &c) const
 {
 return ComplexT<T>(*this).add(c);
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T> ComplexT<T>::operator-(const ComplexT<To> &c) const
 {
 return ComplexT<T>(*this).sub(c);
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T> ComplexT<T>::operator*(const ComplexT<To> &c) const
 {
 return ComplexT<T>(*this).mul(c);
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T> ComplexT<T>::operator/(const ComplexT<To> &c) const
 {
 return ComplexT<T>(*this).div(c);
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T> &ComplexT<T>::operator+=(const ComplexT<To> &c)
 {
 return add(c);
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T> &ComplexT<T>::operator-=(const ComplexT<To> &c)
 {
 return sub(c);
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T> &ComplexT<T>::operator*=(const ComplexT<To> &c)
 {
 return mul(c);
 }

 template<typename T>
 template<typename To>
 inline ComplexT<T> &ComplexT<T>::operator/=(const ComplexT<To> &c)
 {
 return div(c);
 }

 //--

 template<typename T>
 inline ComplexT<T> polar(const T &m, const T &a)
 {
 return ComplexT<T>(m*cos(a), m*sin(a));
 }

 template<typename T>
 inline T norm(const ComplexT<T> &c)
 {
 return c.real()*c.real()+c.imag()*c.imag();
 }

 template<typename T>
 inline T abs(const ComplexT<T> &c)
 {
 return ::sqrt(c.real()*c.real()+c.imag()*c.imag());
 }

 template<typename T, typename To>
 inline ComplexT<T> addmul(const ComplexT<T> &c, T v, const ComplexT<To> &c1)
 {
 return ComplexT<T>(c.real()+v*c1.real(), c.imag()+v*c1.imag());
 }

 template<typename T>
 inline T arg(const ComplexT<T> &c)
 {
 return atan2(c.imag(), c.real());
 }

 template<typename T>
 inline ComplexT<T> recip(const ComplexT<T> &c)
 {
 T n=1.0/norm(c);
 return ComplexT<T>(n*c.real(), -n*c.imag());
 }

 template<typename T>
 inline ComplexT<T> sqrt(const ComplexT<T> &c)
 {
 return polar(::sqrt(abs(c)), arg(c)*0.5);
 }

 //--

 typedef ComplexT<CalcT> Complex;

#endif

 //--
 //
 // Numerical Analysis
 //
 //--

 // Implementation of Brent's Method provided by
 // John D. Cook (http://www.johndcook.com/)

 // The return value of Minimize is the minimum of the function f.
 // The location where f takes its minimum is returned in the variable minLoc.
 // Notation and implementation based on Chapter 5 of Richard Brent's book
 // "Algorithms for Minimization Without Derivatives".

 template<class TFunction>
 CalcT BrentMinimize
 (
 TFunction& f, // [in] objective function to minimize
 CalcT leftEnd, // [in] smaller value of bracketing interval
 CalcT rightEnd, // [in] larger value of bracketing interval
 CalcT epsilon, // [in] stopping tolerance
 CalcT& minLoc // [out] location of minimum
)
 {
 CalcT d, e, m, p, q, r, tol, t2, u, v, w, fu, fv, fw, fx;
 static const CalcT c = 0.5*(3.0 - ::sqrt(5.0));
 static const CalcT SQRT_DBL_EPSILON = ::sqrt(DBL_EPSILON);

 CalcT& a = leftEnd; CalcT& b = rightEnd; CalcT& x = minLoc;

 v = w = x = a + c*(b - a); d = e = 0.0;
 fv = fw = fx = f(x);
 int counter = 0;
 loop:
 counter++;
 m = 0.5*(a + b);
 tol = SQRT_DBL_EPSILON*::fabs(x) + epsilon; t2 = 2.0*tol;
 // Check stopping criteria
 if (::fabs(x - m) > t2 - 0.5*(b - a))
 {
 p = q = r = 0.0;
 if (::fabs(e) > tol)
 {
 // fit parabola
 r = (x - w)*(fx - fv);
 q = (x - v)*(fx - fw);
 p = (x - v)*q - (x - w)*r;
 q = 2.0*(q - r);
 (q > 0.0) ? p = -p : q = -q;
 r = e; e = d;
 }
 if (::fabs(p) < ::fabs(0.5*q*r) && p < q*(a - x) && p < q*(b - x))
 {
 // A parabolic interpolation step
 d = p/q;
 u = x + d;
 // f must not be evaluated too close to a or b
 if (u - a < t2 || b - u < t2)
 d = (x < m) ? tol : -tol;
 }
 else
 {
 // A golden section step
 e = (x < m) ? b : a;
 e -= x;
 d = c*e;
 }
 // f must not be evaluated too close to x
 if (::fabs(d) >= tol)
 u = x + d;
 else if (d > 0.0)
 u = x + tol;
 else
 u = x - tol;
 fu = f(u);
 // Update a, b, v, w, and x
 if (fu <= fx)
 {
 (u < x) ? b = x : a = x;
 v = w; fv = fw;
 w = x; fw = fx;
 x = u; fx = fu;
 }
 else
 {
 (u < x) ? a = u : b = u;
 if (fu <= fw || w == x)
 {
 v = w; fv = fw;
 w = u; fw = fu;
 }
 else if (fu <= fv || v == x || v == w)
 {
 v = u; fv = fu;
 }
 }
 goto loop; // Yes, the dreaded goto statement. But the code
 // here is faithful to Brent's orginal pseudocode.
 }
 return fx;
 }

 //--
 //
 // Infinite Impulse Response Filters
 //
 //--

 // IIR filter implementation using multiple second-order stages.

 class CascadeFilter
 {
 public:
 // Process data in place using Direct Form I
 // skip is added after each frame.
 // Direct Form I is more suitable when the filter parameters
 // are changed often. However, it is slightly slower.
 template<typename T>
 void ProcessI(size_t frames, T *dest, int skip=0);

 // Process data in place using Direct Form II
 // skip is added after each frame.
 // Direct Form II is slightly faster than Direct Form I,
 // but changing filter parameters on stream can result
 // in discontinuities in the output. It is best suited
 // for a filter whose parameters are set only once.
 template<typename T>
 void ProcessII(size_t frames, T *dest, int skip=0);

 // Convenience function that just calls ProcessI.
 // Feel free to change the implementation.
 template<typename T>
 void Process(size_t frames, T *dest, int skip=0);

 // Determine response at angular frequency (0<=w<=kPi)
 Complex Response(CalcT w);

 // Clear the history buffer.
 void Clear(void);

 protected:
 struct Hist;
 struct Stage;

 // for m_nchan==2
#ifdef DSP_SSE3_OPTIMIZED
 template<typename T>
 void ProcessISSEStageStereo(size_t frames, T *dest, Stage *stage, Hist *h, int skip);

 template<typename T>
 void ProcessISSEStereo(size_t frames, T *dest, int skip);
#endif

 protected:
 void Reset (void);
 void Normalize (CalcT scale);
 void SetAStage (CalcT x1, CalcT x2);
 void SetBStage (CalcT x0, CalcT x1, CalcT x2);
 void SetStage (CalcT a1, CalcT a2, CalcT b0, CalcT b1, CalcT b2);

 protected:
 struct Hist
 {
 CalcT v[4];
 };

 struct Stage
 {
 CalcT a[3]; // a[0] unused
 CalcT b[3];
 void Reset(void);
 };

 struct ResponseFunctor
 {
 CascadeFilter *m_filter;
 CalcT operator()(CalcT w);
 ResponseFunctor(CascadeFilter *filter);
 };

 int m_nchan;
 int m_nstage;
 Stage * m_stagep;
 Hist * m_histp;
 };

 //--

 template<typename T>
 void CascadeFilter::ProcessI(size_t frames, T *dest, int skip)
 {
#ifdef DSP_SSE3_OPTIMIZED
 if(m_nchan==2)
 ProcessISSEStereo(frames, dest, skip);
 else
#endif
 while(frames--)
 {
 Hist *h=m_histp;
 for(int j=m_nchan;j;j--)
 {
 CalcT in=CalcT(*dest);
 Stage *s=m_stagep;
 for(int i=m_nstage;i;i--,h++,s++)
 {
 CalcT out;
 out=s->b[0]*in + s->b[1]*h->v[0] + s->b[2]*h->v[1] +
 s->a[1]*h->v[2] + s->a[2]*h->v[3];
 h->v[1]=h->v[0]; h->v[0]=in;
 h->v[3]=h->v[2]; h->v[2]=out;
 in=out;
 }
 *dest++=T(in);
 }
 dest+=skip;
 }
 }

 // A good compiler already produces code that is optimized even for
 // the general case. The only way to make it go faster is to
 // to implement it in assembler or special instructions. Like this:

#ifdef DSP_SSE3_OPTIMIZED
 // ALL SSE OPTIMIZATIONS ASSUME CalcT as double
 template<typename T>
 inline void CascadeFilter::ProcessISSEStageStereo(
 size_t frames, T *dest, Stage *s, Hist *h, int skip)
 {
 assert(m_nchan==2);

#if 1
 CalcT b0=s->b[0];

 __m128d m0=_mm_loadu_pd(&s->a[1]); // a1 , a2
 __m128d m1=_mm_loadu_pd(&s->b[1]); // b1 , b2
 __m128d m2=_mm_loadu_pd(&h[0].v[0]); // h->v[0] , h->v[1]
 __m128d m3=_mm_loadu_pd(&h[0].v[2]); // h->v[2] , h->v[3]
 __m128d m4=_mm_loadu_pd(&h[1].v[0]); // h->v[0] , h->v[1]
 __m128d m5=_mm_loadu_pd(&h[1].v[2]); // h->v[2] , h->v[3]

 while(frames--)
 {
 CalcT in, b0in, out;

 __m128d m6;
 __m128d m7;

 in=CalcT(*dest);
 b0in=b0*in;

 m6=_mm_mul_pd (m1, m2); // b1*h->v[0] , b2*h->v[1]
 m7=_mm_mul_pd (m0, m3); // a1*h->v[2] , a2*h->v[3]
 m6=_mm_add_pd (m6, m7); // b1*h->v[0] + a1*h->v[2], b2*h->v[1] + a2*h->v[3]
 m7=_mm_load_sd(&b0in); // b0*in , 0
 m6=_mm_add_sd (m6, m7); // b1*h->v[0] + a1*h->v[2] + in*b0 , b2*h->v[1] + a2*h->v[3] + 0
 m6=_mm_hadd_pd(m6, m7); // b1*h->v[0] + a1*h->v[2] + in*b0 + b2*h->v[1] + a2*h->v[3], in*b0
 _mm_store_sd(&out, m6);
 m6=_mm_loadh_pd(m6, &in); // out , in
 m2=_mm_shuffle_pd(m6, m2, _MM_SHUFFLE2(0, 1)); // h->v[0]=in , h->v[1]=h->v[0]
 m3=_mm_shuffle_pd(m6, m3, _MM_SHUFFLE2(0, 0)); // h->v[2]=out, h->v[3]=h->v[2]

 *dest++=T(out);

 in=CalcT(*dest);
 b0in=b0*in;

 m6=_mm_mul_pd (m1, m4); // b1*h->v[0] , b2*h->v[1]
 m7=_mm_mul_pd (m0, m5); // a1*h->v[2] , a2*h->v[3]
 m6=_mm_add_pd (m6, m7); // b1*h->v[0] + a1*h->v[2], b2*h->v[1] + a2*h->v[3]
 m7=_mm_load_sd(&b0in); // b0*in , 0
 m6=_mm_add_sd (m6, m7); // b1*h->v[0] + a1*h->v[2] + in*b0 , b2*h->v[1] + a2*h->v[3] + 0
 m6=_mm_hadd_pd(m6, m7); // b1*h->v[0] + a1*h->v[2] + in*b0 + b2*h->v[1] + a2*h->v[3], in*b0
 _mm_store_sd(&out, m6);
 m6=_mm_loadh_pd(m6, &in); // out , in
 m4=_mm_shuffle_pd(m6, m4, _MM_SHUFFLE2(0, 1)); // h->v[0]=in , h->v[1]=h->v[0]
 m5=_mm_shuffle_pd(m6, m5, _MM_SHUFFLE2(0, 0)); // h->v[2]=out, h->v[3]=h->v[2]

 *dest++=T(out);

 dest+=skip;
 }

 // move history from registers back to state
 _mm_storeu_pd(&h[0].v[0], m2);
 _mm_storeu_pd(&h[0].v[2], m3);
 _mm_storeu_pd(&h[1].v[0], m4);
 _mm_storeu_pd(&h[1].v[2], m5);

#else
 // Template-specialized version from which the assembly was modeled
 CalcT a1=s->a[1];
 CalcT a2=s->a[2];
 CalcT b0=s->b[0];
 CalcT b1=s->b[1];
 CalcT b2=s->b[2];
 while(frames--)
 {
 CalcT in, out;

 in=CalcT(*dest);
 out=b0*in+b1*h[0].v[0]+b2*h[0].v[1] +a1*h[0].v[2]+a2*h[0].v[3];
 h[0].v[1]=h[0].v[0]; h[0].v[0]=in;
 h[0].v[3]=h[0].v[2]; h[0].v[2]=out;
 in=out;
 *dest++=T(in);

 in=CalcT(*dest);
 out=b0*in+b1*h[1].v[0]+b2*h[1].v[1] +a1*h[1].v[2]+a2*h[1].v[3];
 h[1].v[1]=h[1].v[0]; h[1].v[0]=in;
 h[1].v[3]=h[1].v[2]; h[1].v[2]=out;
 in=out;
 *dest++=T(in);

 dest+=skip;
 }
#endif
 }

 // Note there could be a loss of accuracy here. Unlike the original version
 // of Process...() we are applying each stage to all of the input data.
 // Since the underlying type T could be float, the results from this function
 // may be different than the unoptimized version. However, it is much faster.
 template<typename T>
 void CascadeFilter::ProcessISSEStereo(size_t frames, T *dest, int skip)
 {
 assert(m_nchan==2);
 Stage *s=m_stagep;
 Hist *h=m_histp;
 for(int i=m_nstage;i;i--,h+=2,s++)
 {
 ProcessISSEStageStereo(frames, dest, s, h, skip);
 }
 }

#endif

 template<typename T>
 void CascadeFilter::ProcessII(size_t frames, T *dest, int skip)
 {
 while(frames--)
 {
 Hist *h=m_histp;
 for(int j=m_nchan;j;j--)
 {
 CalcT in=CalcT(*dest);
 Stage *s=m_stagep;
 for(int i=m_nstage;i;i--,h++,s++)
 {
 CalcT d2=h->v[2]=h->v[1];
 CalcT d1=h->v[1]=h->v[0];
 CalcT d0=h->v[0]=
 in+s->a[1]*d1 + s->a[2]*d2;
 in=s->b[0]*d0 + s->b[1]*d1 + s->b[2]*d2;
 }
 *dest++=T(in);
 }
 dest+=skip;
 }
 }

 template<typename T>
 inline void CascadeFilter::Process(size_t frames, T *dest, int skip)
 {
 ProcessI(frames, dest, skip);
 }

 inline Complex CascadeFilter::Response(CalcT w)
 {
 Complex ch(1);
 Complex cbot(1);
 Complex czn1=polar(1., -w);
 Complex czn2=polar(1., -2*w);

 Stage *s=m_stagep;
 for(int i=m_nstage;i;i--)
 {
 Complex ct(s->b[0]);
 Complex cb(1);
 ct=addmul(ct, s->b[1], czn1);
 cb=addmul(cb, -s->a[1], czn1);
 ct=addmul(ct, s->b[2], czn2);
 cb=addmul(cb, -s->a[2], czn2);
 ch*=ct;
 cbot*=cb;
 s++;
 }

 return ch/cbot;
 }

 inline void CascadeFilter::Clear(void)
 {
 ::memset(m_histp, 0, m_nstage*m_nchan*sizeof(m_histp[0]));
 }

 inline void CascadeFilter::Stage::Reset(void)
 {
 a[1]=0; a[2]=0;
 b[0]=1; b[1]=0; b[2]=0;
 }

 inline void CascadeFilter::Reset(void)
 {
 Stage *s=m_stagep;
 for(int i=m_nstage;i;i--,s++)
 s->Reset();
 }

 // Apply scale factor to stage coefficients.
 inline void CascadeFilter::Normalize(CalcT scale)
 {
 // We are throwing the normalization into the first
 // stage. In theory it might be nice to spread it around
 // to preserve numerical accuracy.
 Stage *s=m_stagep;
 s->b[0]*=scale; s->b[1]*=scale; s->b[2]*=scale;
 }

 inline void CascadeFilter::SetAStage(CalcT x1, CalcT x2)
 {
 Stage *s=m_stagep;
 for(int i=m_nstage;i;i--)
 {
 if(s->a[1]==0 && s->a[2]==0)
 {
 s->a[1]=x1;
 s->a[2]=x2;
 s=0;
 break;
 }
 if(s->a[2]==0 && x2==0)
 {
 s->a[2]=-s->a[1]*x1;
 s->a[1]+=x1;
 s=0;
 break;
 }
 s++;
 }
 assert(s==0);
 }

 inline void CascadeFilter::SetBStage(CalcT x0, CalcT x1, CalcT x2)
 {
 Stage *s=m_stagep;
 for(int i=m_nstage;i;i--)
 {
 if(s->b[1]==0 && s->b[2]==0)
 {
 s->b[0]=x0;
 s->b[1]=x1;
 s->b[2]=x2;
 s=0;
 break;
 }
 if(s->b[2]==0 && x2==0)
 {
 // (b0 + z b1)(x0 + z x1) = (b0 x0 + (b1 x0+b0 x1) z + b1 x1 z^2)
 s->b[2]=s->b[1]*x1;
 s->b[1]=s->b[1]*x0+s->b[0]*x1;
 s->b[0]*=x0;
 s=0;
 break;
 }
 s++;
 }
 assert(s==0);
 }

 // Optimized version for Biquads
 inline void CascadeFilter::SetStage(
 CalcT a1, CalcT a2, CalcT b0, CalcT b1, CalcT b2)
 {
 assert(m_nstage==1);
 Stage *s=&m_stagep[0];
 s->a[1]=a1; s->a[2]=a2;
 s->b[0]=b0; s->b[1]=b1; s->b[2]=b2;
 }

 inline CalcT CascadeFilter::ResponseFunctor::operator()(CalcT w)
 {
 return -Dsp::abs(m_filter->Response(w));
 }

 inline CascadeFilter::ResponseFunctor::ResponseFunctor(CascadeFilter *filter)
 {
 m_filter=filter;
 }

 //--

 template<int stages, int channels>
 class CascadeStages : public CascadeFilter
 {
 public:
 CascadeStages();

 private:
 Hist m_hist [stages*channels];
 Stage m_stage [stages];
 };

 //--

 template<int stages, int channels>
 CascadeStages<stages, channels>::CascadeStages(void)
 {
 m_nchan=channels;
 m_nstage=stages;
 m_stagep=m_stage;
 m_histp=m_hist;
 Clear();
 }

 //--
 //
 // Biquad Second Order IIR Filters
 //
 //--

 // Formulas from http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
 template<int channels>
 class Biquad : public CascadeStages<1, channels>
 {
 protected:
 void Setup(const CalcT a[3], const CalcT b[3]);
 };

 //--

 template<int channels>
 inline void Biquad<channels>::Setup(const CalcT a[3], const CalcT b[3])
 {
 Reset();
 // transform Biquad coefficients
 CalcT ra0=1/a[0];
 SetAStage(-a[1]*ra0, -a[2]*ra0);
 SetBStage(b[0]*ra0, b[1]*ra0, b[2]*ra0);
 }

 //--

 template<int channels>
 class BiquadLowPass : public Biquad<channels>
 {
 public:
 void Setup (CalcT normFreq, CalcT q);
 void SetupFast (CalcT normFreq, CalcT q);
 protected:
 void SetupCommon (CalcT sn, CalcT cs, CalcT q);
 };

 //--

 template<int channels>
 inline void BiquadLowPass<channels>::SetupCommon(CalcT sn, CalcT cs, CalcT q)
 {
 CalcT alph = sn / (2 * q);
 CalcT a0 = 1 / (1 + alph);
 CalcT b1 = 1 - cs;
 CalcT b0 = a0 * b1 * 0.5;
 CalcT a1 = 2 * cs;
 CalcT a2 = alph - 1;
 SetStage(a1*a0, a2*a0, b0, b1*a0, b0);
 }

 template<int channels>
 void BiquadLowPass<channels>::Setup(CalcT normFreq, CalcT q)
 {
 CalcT w0 = 2 * kPi * normFreq;
 CalcT cs = cos(w0);
 CalcT sn = sin(w0);
 SetupCommon(sn, cs, q);
 }

 template<int channels>
 void BiquadLowPass<channels>::SetupFast(CalcT normFreq, CalcT q)
 {
 CalcT w0 = 2 * kPi * normFreq;
 CalcT sn, cs;
 fastsincos(w0, &sn, &cs);
 SetupCommon(sn, cs, q);
 }

 //--

 template<int channels>
 class BiquadHighPass : public Biquad<channels>
 {
 public:
 void Setup (CalcT normFreq, CalcT q);
 void SetupFast (CalcT normFreq, CalcT q);
 protected:
 void SetupCommon (CalcT sn, CalcT cs, CalcT q);
 };

 //--

 template<int channels>
 inline void BiquadHighPass<channels>::SetupCommon(CalcT sn, CalcT cs, CalcT q)
 {
 CalcT alph = sn / (2 * q);
 CalcT a0 = -1 / (1 + alph);
 CalcT b1 = -(1 + cs);
 CalcT b0 = a0 * b1 * -0.5;
 CalcT a1 = -2 * cs;
 CalcT a2 = 1 - alph;
 SetStage(a1*a0, a2*a0, b0, b1*a0, b0);
 }

 template<int channels>
 void BiquadHighPass<channels>::Setup(CalcT normFreq, CalcT q)
 {
 CalcT w0 = 2 * kPi * normFreq;
 CalcT cs = cos(w0);
 CalcT sn = sin(w0);
 SetupCommon(sn, cs, q);
 }

 template<int channels>
 void BiquadHighPass<channels>::SetupFast(CalcT normFreq, CalcT q)
 {
 CalcT w0 = 2 * kPi * normFreq;
 CalcT sn, cs;
 fastsincos(w0, &sn, &cs);
 SetupCommon(sn, cs, q);
 }

 //--

 // Constant skirt gain, peak gain=Q
 template<int channels>
 class BiquadBandPass1 : public Biquad<channels>
 {
 public:
 void Setup (CalcT normFreq, CalcT q);
 void SetupFast (CalcT normFreq, CalcT q);
 protected:
 void SetupCommon (CalcT sn, CalcT cs, CalcT q);
 };

 //--

 template<int channels>
 inline void BiquadBandPass1<channels>::SetupCommon(CalcT sn, CalcT cs, CalcT q)
 {
 CalcT alph = sn / (2 * q);
 CalcT a0 = -1 / (1 + alph);
 CalcT b0 = a0 * (sn * -0.5);
 CalcT a1 = -2 * cs;
 CalcT a2 = 1 - alph;
 SetStage(a1*a0, a2*a0, b0, 0, -b0);
 }

 template<int channels>
 void BiquadBandPass1<channels>::Setup(CalcT normFreq, CalcT q)
 {
 CalcT w0 = 2 * kPi * normFreq;
 CalcT cs = cos(w0);
 CalcT sn = sin(w0);
 SetupCommon(sn, cs, q);
 }

 template<int channels>
 void BiquadBandPass1<channels>::SetupFast(CalcT normFreq, CalcT q)
 {
 CalcT w0 = 2 * kPi * normFreq;
 CalcT sn, cs;
 fastsincos(w0, &sn, &cs);
 SetupCommon(sn, cs, q);
 }

 //--

 // Constant 0dB peak gain
 template<int channels>
 class BiquadBandPass2 : public Biquad<channels>
 {
 public:
 void Setup (CalcT normFreq, CalcT q);
 void SetupFast (CalcT normFreq, CalcT q);
 protected:
 void SetupCommon (CalcT sn, CalcT cs, CalcT q);
 };

 //--

 template<int channels>
 inline void BiquadBandPass2<channels>::SetupCommon(CalcT sn, CalcT cs, CalcT q)
 {
 CalcT alph = sn / (2 * q);
 CalcT b0 = -alph;
 CalcT b2 = alph;
 CalcT a0 = -1 / (1 + alph);
 CalcT a1 = -2 * cs;
 CalcT a2 = 1 - alph;
 SetStage(a1*a0, a2*a0, b0*a0, 0, b2*a0);
 }

 template<int channels>
 void BiquadBandPass2<channels>::Setup(CalcT normFreq, CalcT q)
 {
 CalcT w0 = 2 * kPi * normFreq;
 CalcT cs = cos(w0);
 CalcT sn = sin(w0);
 SetupCommon(sn, cs, q);
 }

 template<int channels>
 void BiquadBandPass2<channels>::SetupFast(CalcT normFreq, CalcT q)
 {
 CalcT w0 = 2 * kPi * normFreq;
 CalcT sn, cs;
 fastsincos(w0, &sn, &cs);
 SetupCommon(sn, cs, q);
 }

 //--

 template<int channels>
 class BiquadBandStop : public Biquad<channels>
 {
 public:
 void Setup (CalcT normFreq, CalcT q);
 void SetupFast (CalcT normFreq, CalcT q);
 protected:
 void SetupCommon (CalcT sn, CalcT cs, CalcT q);
 };

 //--

 template<int channels>
 inline void BiquadBandStop<channels>::SetupCommon(CalcT sn, CalcT cs, CalcT q)
 {
 CalcT alph = sn / (2 * q);
 CalcT a0 = 1 / (1 + alph);
 CalcT b1 = a0 * (-2 * cs);
 CalcT a2 = alph - 1;
 SetStage(-b1, a2*a0, a0, b1, a0);
 }

 template<int channels>
 void BiquadBandStop<channels>::Setup(CalcT normFreq, CalcT q)
 {
 CalcT w0 = 2 * kPi * normFreq;
 CalcT cs = cos(w0);
 CalcT sn = sin(w0);
 SetupCommon(sn, cs, q);
 }

 template<int channels>
 void BiquadBandStop<channels>::SetupFast(CalcT normFreq, CalcT q)
 {
 CalcT w0 = 2 * kPi * normFreq;
 CalcT sn, cs;
 fastsincos(w0, &sn, &cs);
 SetupCommon(sn, cs, q);
 }

 //--

 template<int channels>
 class BiquadAllPass: public Biquad<channels>
 {
 public:
 void Setup (CalcT normFreq, CalcT q);
 void SetupFast (CalcT normFreq, CalcT q);
 protected:
 void SetupCommon (CalcT sn, CalcT cs, CalcT q);
 };

 //--

 template<int channels>
 void BiquadAllPass<channels>::SetupCommon(CalcT sn, CalcT cs, CalcT q)
 {
 CalcT alph = sn / (2 * q);
 CalcT b2 = 1 + alph;
 CalcT a0 = 1 / b2;
 CalcT b0 =(1 - alph) * a0;
 CalcT b1 = -2 * cs * a0;
 SetStage(-b1, -b0, b0, b1, b2*a0);
 }

 template<int channels>
 void BiquadAllPass<channels>::Setup(CalcT normFreq, CalcT q)
 {
 CalcT w0 = 2 * kPi * normFreq;
 CalcT cs = cos(w0);
 CalcT sn = sin(w0);
 SetupCommon(sn, cs, q);
 }

 template<int channels>
 void BiquadAllPass<channels>::SetupFast(CalcT normFreq, CalcT q)
 {
 CalcT w0 = 2 * kPi * normFreq;
 CalcT sn, cs;
 fastsincos(w0, &sn, &cs);
 SetupCommon(sn, cs, q);
 }

 //--

 template<int channels>
 class BiquadPeakEq: public Biquad<channels>
 {
 public:
 void Setup (CalcT normFreq, CalcT dB, CalcT bandWidth);
 void SetupFast (CalcT normFreq, CalcT dB, CalcT bandWidth);
 protected:
 void SetupCommon (CalcT sn, CalcT cs, CalcT alph, CalcT A);
 };

 //--

 template<int channels>
 inline void BiquadPeakEq<channels>::SetupCommon(
 CalcT sn, CalcT cs, CalcT alph, CalcT A)
 {
 CalcT t=alph*A;
 CalcT b0 = 1 - t;
 CalcT b2 = 1 + t;
 t=alph/A;
 CalcT a0 = 1 / (1 + t);
 CalcT a2 = t - 1;
 CalcT b1 = a0 * (-2 * cs);
 CalcT a1 = -b1;

 SetStage(a1, a2*a0, b0*a0, b1, b2*a0);
 }

 template<int channels>
 void BiquadPeakEq<channels>::Setup(CalcT normFreq, CalcT dB, CalcT bandWidth)
 {
 CalcT A = pow(10, dB/40);
 CalcT w0 = 2 * kPi * normFreq;
 CalcT cs = cos(w0);
 CalcT sn = sin(w0);
 CalcT alph = sn * sinh(kLn2/2 * bandWidth * w0/sn);
 SetupCommon(sn, cs, alph, A);
 }

 template<int channels>
 void BiquadPeakEq<channels>::SetupFast(CalcT normFreq, CalcT dB, CalcT bandWidth)
 {
 CalcT A = pow(10, dB/40);
 CalcT w0 = 2 * kPi * normFreq;
 CalcT sn, cs;
 fastsincos(w0, &sn, &cs);
 CalcT alph = sn * sinh(kLn2/2 * bandWidth * w0/sn);
 SetupCommon(sn, cs, alph, A);
 }

 //--

 template<int channels>
 class BiquadLowShelf : public Biquad<channels>
 {
 public:
 void Setup (CalcT normFreq, CalcT dB, CalcT shelfSlope=1.0);
 void SetupFast (CalcT normFreq, CalcT dB, CalcT shelfSlope=1.0);
 protected:
 void SetupCommon (CalcT cs, CalcT A, CalcT sa);
 };

 //--

 template<int channels>
 inline void BiquadLowShelf<channels>::SetupCommon(
 CalcT cs, CalcT A, CalcT sa)
 {
 CalcT An = A-1;
 CalcT Ap = A+1;
 CalcT Ancs = An*cs;
 CalcT Apcs = Ap*cs;
 CalcT b0 = A * (Ap - Ancs + sa);
 CalcT b2 = A * (Ap - Ancs - sa);
 CalcT b1 = 2 * A * (An - Apcs);
 CalcT a2 = sa - (Ap + Ancs);
 CalcT a0 = 1 / (Ap + Ancs + sa);
 CalcT a1 = 2 * (An + Apcs);
 SetStage(a1*a0, a2*a0, b0*a0, b1*a0, b2*a0);
 }

 template<int channels>
 void BiquadLowShelf<channels>::Setup(CalcT normFreq, CalcT dB, CalcT shelfSlope)
 {
 CalcT A = pow(10, dB/40);
 CalcT w0 = 2 * kPi * normFreq;
 CalcT cs = cos(w0);
 CalcT sn = sin(w0);
 CalcT al = sn / 2 * ::sqrt((A + 1/A) * (1/shelfSlope - 1) + 2);
 CalcT sa = 2 * ::sqrt(A) * al;
 SetupCommon(cs, A, sa);
 }

 // This could be optimized further
 template<int channels>
 void BiquadLowShelf<channels>::SetupFast(CalcT normFreq, CalcT dB, CalcT shelfSlope)
 {
 CalcT A = pow(10, dB/40);
 CalcT w0 = 2 * kPi * normFreq;
 CalcT sn, cs;
 fastsincos(w0, &sn, &cs);
 CalcT al = sn / 2 * fastsqrt1((A + 1/A) * (1/shelfSlope - 1) + 2);
 CalcT sa = 2 * fastsqrt1(A) * al;
 SetupCommon(cs, A, sa);
 }

 //--

 template<int channels>
 class BiquadHighShelf : public Biquad<channels>
 {
 public:
 void Setup (CalcT normFreq, CalcT dB, CalcT shelfSlope=1.0);
 void SetupFast (CalcT normFreq, CalcT dB, CalcT shelfSlope=1.0);
 protected:
 void SetupCommon (CalcT cs, CalcT A, CalcT sa);
 };

 //--

 template<int channels>
 void BiquadHighShelf<channels>::SetupCommon(
 CalcT cs, CalcT A, CalcT sa)
 {
 CalcT An = A-1;
 CalcT Ap = A+1;
 CalcT Ancs = An*cs;
 CalcT Apcs = Ap*cs;
 CalcT b0 = A * (Ap + Ancs + sa);
 CalcT b1 = -2 * A * (An + Apcs);
 CalcT b2 = A * (Ap + Ancs - sa);
 CalcT a0 = (Ap - Ancs + sa);
 CalcT a2 = Ancs + sa - Ap;
 CalcT a1 = -2 * (An - Apcs);
 SetStage(a1/a0, a2/a0, b0/a0, b1/a0, b2/a0);
 }

 template<int channels>
 void BiquadHighShelf<channels>::Setup(CalcT normFreq, CalcT dB, CalcT shelfSlope)
 {
 CalcT A = pow(10, dB/40);
 CalcT w0 = 2 * kPi * normFreq;
 CalcT cs = cos(w0);
 CalcT sn = sin(w0);

 CalcT alph = sn / 2 * ::sqrt((A + 1/A) * (1/shelfSlope - 1) + 2);
 CalcT sa = 2 * ::sqrt(A) * alph;
 SetupCommon(cs, A, sa);
 }

 template<int channels>
 void BiquadHighShelf<channels>::SetupFast(CalcT normFreq, CalcT dB, CalcT shelfSlope)
 {
 CalcT A = pow(10, dB/40);
 CalcT w0 = 2 * kPi * normFreq;
 CalcT sn, cs;
 fastsincos(w0, &sn, &cs);

 CalcT alph = sn / 2 * fastsqrt1((A + 1/A) * (1/shelfSlope - 1) + 2);
 CalcT sa = 2 * fastsqrt1(A) * alph;
 SetupCommon(cs, A, sa);
 }

 //--
 //
 // General N-Pole IIR Filter
 //
 //--

 template<int stages, int channels>
 class PoleFilter : public CascadeStages<stages, channels>
 {
 public:
 PoleFilter();

 virtual int CountPoles (void)=0;
 virtual int CountZeroes (void)=0;

 virtual Complex GetPole (int i)=0;
 virtual Complex GetZero (int i)=0;

 protected:
 virtual Complex GetSPole (int i, CalcT wc)=0;

 protected:
 // Determines the method of obtaining
 // unity gain coefficients in the passband.
 enum Hint
 {
 // No normalizating
 hintNone,
 // Use Brent's method to find the maximum
 hintBrent,
 // Use the response at a given frequency
 hintPassband
 };

 Complex BilinearTransform (const Complex &c);
 Complex BandStopTransform (int i, const Complex &c);
 Complex BandPassTransform (int i, const Complex &c);
 Complex GetBandStopPole (int i);
 Complex GetBandStopZero (int i);
 Complex GetBandPassPole (int i);
 Complex GetBandPassZero (int i);
 void Normalize (void);
 void Prepare (void);

 virtual void BrentHint (CalcT *w0, CalcT *w1);
 virtual CalcT PassbandHint(void);

 protected:
 Hint m_hint;
 int m_n;
 CalcT m_wc;
 CalcT m_wc2;
 };

 //--

 template<int stages, int channels>
 inline PoleFilter<stages, channels>::PoleFilter(void)
 {
 m_hint=hintNone;
 }

 template<int stages, int channels>
 inline Complex PoleFilter<stages, channels>::BilinearTransform(const Complex &c)
 {
 return (c+1.)/(-c+1.);
 }

 template<int stages, int channels>
 inline Complex PoleFilter<stages, channels>::BandStopTransform(int i, const Complex &c)
 {
 CalcT a=cos((m_wc+m_wc2)*.5) /
 cos((m_wc-m_wc2)*.5);
 CalcT b=tan((m_wc-m_wc2)*.5);
 Complex c2(0);
 c2=addmul(c2, 4*(b*b+a*a-1), c);
 c2+=8*(b*b-a*a+1);
 c2*=c;
 c2+=4*(a*a+b*b-1);
 c2=Dsp::sqrt(c2);
 c2*=((i&1)==0)?.5:-.5;
 c2+=a;
 c2=addmul(c2, -a, c);
 Complex c3(b+1);
 c3=addmul(c3, b-1, c);
 return c2/c3;
 }

 template<int stages, int channels>
 inline Complex PoleFilter<stages, channels>::BandPassTransform(int i, const Complex &c)
 {
 CalcT a= cos((m_wc+m_wc2)*0.5)/
 cos((m_wc-m_wc2)*0.5);
 CalcT b=1/tan((m_wc-m_wc2)*0.5);
 Complex c2(0);
 c2=addmul(c2, 4*(b*b*(a*a-1)+1), c);
 c2+=8*(b*b*(a*a-1)-1);
 c2*=c;
 c2+=4*(b*b*(a*a-1)+1);
 c2=Dsp::sqrt(c2);
 if ((i & 1) == 0)
 c2=-c2;
 c2=addmul(c2, 2*a*b, c);
 c2+=2*a*b;
 Complex c3(0);
 c3=addmul(c3, 2*(b-1), c);
 c3+=2*(1+b);
 return c2/c3;
 }

 template<int stages, int channels>
 Complex PoleFilter<stages, channels>::GetBandStopPole(int i)
 {
 Complex c=GetSPole(i/2, kPi_2);
 c=BilinearTransform(c);
 c=BandStopTransform(i, c);
 return c;
 }

 template<int stages, int channels>
 Complex PoleFilter<stages, channels>::GetBandStopZero(int i)
 {
 return BandStopTransform(i, Complex(-1));
 }

 template<int stages, int channels>
 Complex PoleFilter<stages, channels>::GetBandPassPole(int i)
 {
 Complex c=GetSPole(i/2, kPi_2);
 c=BilinearTransform(c);
 c=BandPassTransform(i, c);
 return c;
 }

 template<int stages, int channels>
 Complex PoleFilter<stages, channels>::GetBandPassZero(int i)
 {
 return Complex((i>=m_n)?1:-1);
 }

 template<int stages, int channels>
 void PoleFilter<stages, channels>::Normalize(void)
 {
 switch(m_hint)
 {
 default:
 case hintNone:
 break;

 case hintPassband:
 {
 CalcT w=PassbandHint();
 ResponseFunctor f(this);
 CalcT mag=-f(w);
 CascadeStages::Normalize(1/mag);
 }
 break;

 case hintBrent:
 {
 ResponseFunctor f(this);
 CalcT w0, w1, wmin, mag;
 BrentHint(&w0, &w1);
 mag=-BrentMinimize(f, w0, w1, 1e-4, wmin);
 CascadeStages::Normalize(1/mag);
 }
 break;
 }
 }

 template<int stages, int channels>
 void PoleFilter<stages, channels>::Prepare(void)
 {
 if(m_wc2<1e-8)
 m_wc2=1e-8;
 if(m_wc >kPi-1e-8)
 m_wc =kPi-1e-8;

 Reset();

 Complex c;
 int poles=CountPoles();
 for(int i=0;i<poles;i++)
 {
 c=GetPole(i);
 if(::abs(c.imag())<1e-6)
 c=Complex(c.real(), 0);
 if(c.imag()==0)
 SetAStage(c.real(), 0);
 else if(c.imag()>0)
 SetAStage(2*c.real(), -Dsp::norm(c));
 }

 int zeroes=CountZeroes();
 for(int i=0;i<zeroes;i++)
 {
 c=GetZero(i);
 if(::abs(c.imag())<1e-6)
 c=Complex(c.real(), 0);
 if(c.imag()==0)
 SetBStage(-c.real(), 1, 0);
 else if(c.imag()>0)
 SetBStage(Dsp::norm(c), -2*c.real(), 1);
 }

 Normalize();
 }

 template<int stages, int channels>
 void PoleFilter<stages, channels>::BrentHint(CalcT *w0, CalcT *w1)
 {
 // best that this never executes
 *w0=1e-4;
 *w1=kPi-1e-4;
 }

 template<int stages, int channels>
 CalcT PoleFilter<stages, channels>::PassbandHint(void)
 {
 // should never get here
 assert(0);
 return kPi_2;
 }

 //--
 //
 // Butterworth Response IIR Filter
 //
 //--

 // Butterworth filter response characteristic.
 // Maximally flat magnitude response in the passband at the
 // expense of a more shallow rolloff in comparison to other types.
 template<int poles, int channels>
 class Butterworth : public PoleFilter<int((poles+1)/2), channels>
 {
 public:
 Butterworth();

 // cutoffFreq = freq / sampleRate
 void Setup (CalcT cutoffFreq);

 virtual int CountPoles (void);
 virtual int CountZeroes (void);
 virtual Complex GetPole (int i);

 protected:
 Complex GetSPole (int i, CalcT wc);
 };

 //--

 template<int poles, int channels>
 Butterworth<poles, channels>::Butterworth(void)
 {
 m_hint=hintPassband;
 }

 template<int poles, int channels>
 void Butterworth<poles, channels>::Setup(CalcT cutoffFreq)
 {
 m_n=poles;
 m_wc=2*kPi*cutoffFreq;
 Prepare();
 }

 template<int poles, int channels>
 int Butterworth<poles, channels>::CountPoles(void)
 {
 return poles;
 }

 template<int poles, int channels>
 int Butterworth<poles, channels>::CountZeroes(void)
 {
 return poles;
 }

 template<int poles, int channels>
 Complex Butterworth<poles, channels>::GetPole(int i)
 {
 return BilinearTransform(GetSPole(i, m_wc));
 }

 template<int poles, int channels>
 Complex Butterworth<poles, channels>::GetSPole(int i, CalcT wc)
 {
 return polar(tan(wc*0.5), kPi_2+(2*i+1)*kPi/(2*m_n));
 }

 //--

 // Low Pass Butterworth filter
 // Stable up to 53 poles (frequency min=0.13% of Nyquist)
 template<int poles, int channels>
 class ButterLowPass : public Butterworth<poles, channels>
 {
 public:
 Complex GetZero (int i);

 protected:
 CalcT PassbandHint (void);
 };

 //--

 template<int poles, int channels>
 Complex ButterLowPass<poles, channels>::GetZero(int i)
 {
 return Complex(-1);
 }

 template<int poles, int channels>
 CalcT ButterLowPass<poles, channels>::PassbandHint(void)
 {
 return 0;
 }

 //--

 // High Pass Butterworth filter
 // Maximally flat magnitude response in the passband.
 // Stable up to 110 poles (frequency max=97% of Nyquist)
 template<int poles, int channels>
 class ButterHighPass : public Butterworth<poles, channels>
 {
 public:
 Complex GetZero(int i);

 protected:
 CalcT PassbandHint (void);
 };

 //--

 template<int poles, int channels>
 Complex ButterHighPass<poles, channels>::GetZero(int i)
 {
 return Complex(1);
 }

 template<int poles, int channels>
 CalcT ButterHighPass<poles, channels>::PassbandHint(void)
 {
 return kPi;
 }

 //--

 // Band Pass Butterworth filter
 // Stable up to 80 pairs
 template<int pairs, int channels>
 class ButterBandPass : public Butterworth<pairs*2, channels>
 {
 public:
 // centerFreq = freq / sampleRate
 // normWidth = freqWidth / sampleRate
 void Setup (CalcT centerFreq, CalcT normWidth);

 virtual int CountPoles (void);
 virtual int CountZeroes (void);
 virtual Complex GetPole (int i);
 virtual Complex GetZero (int i);

 protected:
 CalcT PassbandHint (void);
 };

 //--

 template<int pairs, int channels>
 void ButterBandPass<pairs, channels>::Setup(CalcT centerFreq, CalcT normWidth)
 {
 m_n=pairs;
 CalcT angularWidth=2*kPi*normWidth;
 m_wc2=2*kPi*centerFreq-(angularWidth/2);
 m_wc =m_wc2+angularWidth;
 Prepare();
 }

 template<int pairs, int channels>
 int ButterBandPass<pairs, channels>::CountPoles(void)
 {
 return pairs*2;
 }

 template<int pairs, int channels>
 int ButterBandPass<pairs, channels>::CountZeroes(void)
 {
 return pairs*2;
 }

 template<int pairs, int channels>
 Complex ButterBandPass<pairs, channels>::GetPole(int i)
 {
 return GetBandPassPole(i);
 }

 template<int pairs, int channels>
 Complex ButterBandPass<pairs, channels>::GetZero(int i)
 {
 return GetBandPassZero(i);
 }

 template<int poles, int channels>
 CalcT ButterBandPass<poles, channels>::PassbandHint(void)
 {
 return (m_wc+m_wc2)/2;
 }

 //--

 // Band Stop Butterworth filter
 // Stable up to 109 pairs
 template<int pairs, int channels>
 class ButterBandStop : public Butterworth<pairs*2, channels>
 {
 public:
 // centerFreq = freq / sampleRate
 // normWidth = freqWidth / sampleRate
 void Setup (CalcT centerFreq, CalcT normWidth);

 virtual int CountPoles (void);
 virtual int CountZeroes (void);
 virtual Complex GetPole (int i);
 virtual Complex GetZero (int i);

 protected:
 CalcT PassbandHint (void);
 };

 //--

 template<int pairs, int channels>
 void ButterBandStop<pairs, channels>::Setup(CalcT centerFreq, CalcT normWidth)
 {
 m_n=pairs;
 CalcT angularWidth=2*kPi*normWidth;
 m_wc2=2*kPi*centerFreq-(angularWidth/2);
 m_wc =m_wc2+angularWidth;
 Prepare();
 }

 template<int pairs, int channels>
 int ButterBandStop<pairs, channels>::CountPoles(void)
 {
 return pairs*2;
 }

 template<int pairs, int channels>
 int ButterBandStop<pairs, channels>::CountZeroes(void)
 {
 return pairs*2;
 }

 template<int pairs, int channels>
 Complex ButterBandStop<pairs, channels>::GetPole(int i)
 {
 return GetBandStopPole(i);
 }

 template<int pairs, int channels>
 Complex ButterBandStop<pairs, channels>::GetZero(int i)
 {
 return GetBandStopZero(i);
 }

 template<int poles, int channels>
 CalcT ButterBandStop<poles, channels>::PassbandHint(void)
 {
 if((m_wc+m_wc2)/2<kPi_2)
 return kPi;
 else
 return 0;
 }

 //--
 //
 // Chebyshev Response IIR Filter
 //
 //--

 // Type I Chebyshev filter characteristic.
 // Minimum error between actual and ideal response at the expense of
 // a user-definable amount of ripple in the passband.
 template<int poles, int channels>
 class Chebyshev1 : public PoleFilter<int((poles+1)/2), channels>
 {
 public:
 Chebyshev1();

 // cutoffFreq = freq / sampleRate
 virtual void Setup (CalcT cutoffFreq, CalcT rippleDb);

 virtual int CountPoles (void);
 virtual int CountZeroes (void);
 virtual Complex GetPole (int i);
 virtual Complex GetZero (int i);

 protected:
 void SetupCommon (CalcT rippleDb);
 virtual Complex GetSPole (int i, CalcT wc);

 protected:
 CalcT m_sgn;
 CalcT m_eps;
 };

 //--

 template<int poles, int channels>
 Chebyshev1<poles, channels>::Chebyshev1()
 {
 m_hint=hintBrent;
 }

 template<int poles, int channels>
 void Chebyshev1<poles, channels>::Setup(CalcT cutoffFreq, CalcT rippleDb)
 {
 m_n=poles;
 m_wc=2*kPi*cutoffFreq;
 SetupCommon(rippleDb);
 }

 template<int poles, int channels>
 void Chebyshev1<poles, channels>::SetupCommon(CalcT rippleDb)
 {
 m_eps=::sqrt(1/::exp(-rippleDb*0.1*kLn10)-1);
 Prepare();
 // This moves the bottom of the ripples to 0dB gain
 //CascadeStages::Normalize(pow(10, rippleDb/20.0));
 }

 template<int poles, int channels>
 int Chebyshev1<poles, channels>::CountPoles(void)
 {
 return poles;
 }

 template<int poles, int channels>
 int Chebyshev1<poles, channels>::CountZeroes(void)
 {
 return poles;
 }

 template<int poles, int channels>
 Complex Chebyshev1<poles, channels>::GetPole(int i)
 {
 return BilinearTransform(GetSPole(i, m_wc))*m_sgn;
 }

 template<int poles, int channels>
 Complex Chebyshev1<poles, channels>::GetZero(int i)
 {
 return Complex(-m_sgn);
 }

 template<int poles, int channels>
 Complex Chebyshev1<poles, channels>::GetSPole(int i, CalcT wc)
 {
 int n = m_n;
 CalcT ni = 1.0/n;
 CalcT alpha = 1/m_eps+::sqrt(1+1/(m_eps*m_eps));
 CalcT pn = pow(alpha, ni);
 CalcT nn = pow(alpha, -ni);
 CalcT a = 0.5*(pn - nn);
 CalcT b = 0.5*(pn + nn);
 CalcT theta = kPi_2 + (2*i+1) * kPi/(2*n);
 Complex c = polar(tan(0.5*(m_sgn==-1?(kPi-wc):wc)), theta);
 return Complex(a*c.real(), b*c.imag());
 }

 //--

 // Low Pass Chebyshev Type I filter
 template<int poles, int channels>
 class Cheby1LowPass : public Chebyshev1<poles, channels>
 {
 public:
 Cheby1LowPass();

 void Setup (CalcT cutoffFreq, CalcT rippleDb);

 protected:
 CalcT PassbandHint (void);
 };

 //--

 template<int poles, int channels>
 Cheby1LowPass<poles, channels>::Cheby1LowPass()
 {
 m_sgn=1;
 m_hint=hintPassband;
 }

 template<int poles, int channels>
 void Cheby1LowPass<poles, channels>::Setup(CalcT cutoffFreq, CalcT rippleDb)
 {
 Chebyshev1::Setup(cutoffFreq, rippleDb);
 // move peak of ripple down to 0dB
 if(!(poles&1))
 CascadeStages::Normalize(pow(10, -rippleDb/20.0));
 }

 template<int poles, int channels>
 CalcT Cheby1LowPass<poles, channels>::PassbandHint(void)
 {
 return 0;
 }

 //--

 // High Pass Chebyshev Type I filter
 template<int poles, int channels>
 class Cheby1HighPass : public Chebyshev1<poles, channels>
 {
 public:
 Cheby1HighPass();

 void Setup (CalcT cutoffFreq, CalcT rippleDb);

 protected:
 CalcT PassbandHint (void);
 };

 //--

 template<int poles, int channels>
 Cheby1HighPass<poles, channels>::Cheby1HighPass()
 {
 m_sgn=-1;
 m_hint=hintPassband;
 }

 template<int poles, int channels>
 void Cheby1HighPass<poles, channels>::Setup(CalcT cutoffFreq, CalcT rippleDb)
 {
 Chebyshev1::Setup(cutoffFreq, rippleDb);
 // move peak of ripple down to 0dB
 if(!(poles&1))
 CascadeStages::Normalize(pow(10, -rippleDb/20.0));
 }

 template<int poles, int channels>
 CalcT Cheby1HighPass<poles, channels>::PassbandHint(void)
 {
 return kPi;
 }

 //--

 // Band Pass Chebyshev Type I filter
 template<int pairs, int channels>
 class Cheby1BandPass : public Chebyshev1<pairs*2, channels>
 {
 public:
 Cheby1BandPass();

 void Setup (CalcT centerFreq, CalcT normWidth, CalcT rippleDb);

 int CountPoles (void);
 int CountZeroes (void);
 Complex GetPole (int i);
 Complex GetZero (int i);

 protected:
 void BrentHint (CalcT *w0, CalcT *w1);
 //CalcT PassbandHint (void);
 };

 //--

 template<int pairs, int channels>
 Cheby1BandPass<pairs, channels>::Cheby1BandPass()
 {
 m_sgn=1;
 m_hint=hintBrent;
 }

 template<int pairs, int channels>
 void Cheby1BandPass<pairs, channels>::Setup(CalcT centerFreq, CalcT normWidth, CalcT rippleDb)
 {
 m_n=pairs;
 CalcT angularWidth=2*kPi*normWidth;
 m_wc2=2*kPi*centerFreq-(angularWidth/2);
 m_wc =m_wc2+angularWidth;
 SetupCommon(rippleDb);
 }

 template<int pairs, int channels>
 int Cheby1BandPass<pairs, channels>::CountPoles(void)
 {
 return pairs*2;
 }

 template<int pairs, int channels>
 int Cheby1BandPass<pairs, channels>::CountZeroes(void)
 {
 return pairs*2;
 }

 template<int pairs, int channels>
 Complex Cheby1BandPass<pairs, channels>::GetPole(int i)
 {
 return GetBandPassPole(i);
 }

 template<int pairs, int channels>
 Complex Cheby1BandPass<pairs, channels>::GetZero(int i)
 {
 return GetBandPassZero(i);
 }

 template<int poles, int channels>
 void Cheby1BandPass<poles, channels>::BrentHint(CalcT *w0, CalcT *w1)
 {
 CalcT d=1e-4*(m_wc-m_wc2)/2;
 *w0=m_wc2+d;
 *w1=m_wc-d;
 }

 /*
 // Unfortunately, this doesn't work at the frequency extremes
 // Maybe we can inverse pre-warp the center point to make sure
 // it stays put after bilinear and bandpass transformation.
 template<int poles, int channels>
 CalcT Cheby1BandPass<poles, channels>::PassbandHint(void)
 {
 return (m_wc+m_wc2)/2;
 }
 */

 //--

 // Band Stop Chebyshev Type I filter
 template<int pairs, int channels>
 class Cheby1BandStop : public Chebyshev1<pairs*2, channels>
 {
 public:
 Cheby1BandStop();

 void Setup (CalcT centerFreq, CalcT normWidth, CalcT rippleDb);

 int CountPoles (void);
 int CountZeroes (void);
 Complex GetPole (int i);
 Complex GetZero (int i);

 protected:
 void BrentHint (CalcT *w0, CalcT *w1);
 CalcT PassbandHint (void);
 };

 //--

 template<int pairs, int channels>
 Cheby1BandStop<pairs, channels>::Cheby1BandStop()
 {
 m_sgn=1;
 m_hint=hintPassband;
 }

 template<int pairs, int channels>

Comments

	Date: 2010-06-18 10:53:04

	By: ten.nozirev@nuSL

These codes are just what I am looking for. Too bad they are incomplete as posted here. Could someone direct me to a complete version?

	Date: 2011-02-03 16:37:34

	By: moc.tenalpderyrgna@nrobkcah

I *think* this is the project homepage:
http://code.google.com/p/dspfilterscpp/
although I haven't downloaded anything to verify it is and that the code is complete.

	Date: 2012-05-06 01:26:08

	By: moc.liamg@oclaf.einniv

The project is here:
https://github.com/vinniefalco/DSPFilters.git

Butterworth Optimized C++ Class

	Author or source: neotec

	Type: 24db Resonant Lowpass

	Created: 2007-01-20 22:41:06

notes

This ist exactly the same as posted by "Zxform" (filters004.txt). The only difference is,
that this version is an optimized one.

Parameters:
Cutoff [0.f -> Nyquist.f]
Resonance [0.f -> 1.f]

There are some minima and maxima defined, to make ist sound nice in all situations. This
class is part of some of my VST Plugins, and works well and executes fast.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

	// FilterButterworth24db.h

#pragma once

class CFilterButterworth24db
{
public:
 CFilterButterworth24db(void);
 ~CFilterButterworth24db(void);
 void SetSampleRate(float fs);
 void Set(float cutoff, float q);
 float Run(float input);

private:
 float t0, t1, t2, t3;
 float coef0, coef1, coef2, coef3;
 float history1, history2, history3, history4;
 float gain;
 float min_cutoff, max_cutoff;
};

// FilterButterworth24db.cpp

#include <math.h>

#define BUDDA_Q_SCALE 6.f

#include "FilterButterworth24db.h"

CFilterButterworth24db::CFilterButterworth24db(void)
{
 this->history1 = 0.f;
 this->history2 = 0.f;
 this->history3 = 0.f;
 this->history4 = 0.f;

 this->SetSampleRate(44100.f);
 this->Set(22050.f, 0.0);
}

CFilterButterworth24db::~CFilterButterworth24db(void)
{
}

void CFilterButterworth24db::SetSampleRate(float fs)
{
 float pi = 4.f * atanf(1.f);

 this->t0 = 4.f * fs * fs;
 this->t1 = 8.f * fs * fs;
 this->t2 = 2.f * fs;
 this->t3 = pi / fs;

 this->min_cutoff = fs * 0.01f;
 this->max_cutoff = fs * 0.45f;
}

void CFilterButterworth24db::Set(float cutoff, float q)
{
 if (cutoff < this->min_cutoff)
 cutoff = this->min_cutoff;
 else if(cutoff > this->max_cutoff)
 cutoff = this->max_cutoff;

 if(q < 0.f)
 q = 0.f;
 else if(q > 1.f)
 q = 1.f;

 float wp = this->t2 * tanf(this->t3 * cutoff);
 float bd, bd_tmp, b1, b2;

 q *= BUDDA_Q_SCALE;
 q += 1.f;

 b1 = (0.765367f / q) / wp;
 b2 = 1.f / (wp * wp);

 bd_tmp = this->t0 * b2 + 1.f;

 bd = 1.f / (bd_tmp + this->t2 * b1);

 this->gain = bd * 0.5f;

 this->coef2 = (2.f - this->t1 * b2);

 this->coef0 = this->coef2 * bd;
 this->coef1 = (bd_tmp - this->t2 * b1) * bd;

 b1 = (1.847759f / q) / wp;

 bd = 1.f / (bd_tmp + this->t2 * b1);

 this->gain *= bd;
 this->coef2 *= bd;
 this->coef3 = (bd_tmp - this->t2 * b1) * bd;
}

float CFilterButterworth24db::Run(float input)
{
 float output = input * this->gain;
 float new_hist;

 output -= this->history1 * this->coef0;
 new_hist = output - this->history2 * this->coef1;

 output = new_hist + this->history1 * 2.f;
 output += this->history2;

 this->history2 = this->history1;
 this->history1 = new_hist;

 output -= this->history3 * this->coef2;
 new_hist = output - this->history4 * this->coef3;

 output = new_hist + this->history3 * 2.f;
 output += this->history4;

 this->history4 = this->history3;
 this->history3 = new_hist;

 return output;
}

Comments

	Date: 2007-01-22 18:38:23

	By: moc.oohay@bob

This sounds really nice, especially with resonance. Although it becomes unstable below 4K (at 44100 s/r), which explains why the min_cutoff value has been set quite high. Would using doubles help stabilise it?
Also, I can't figure out how to get a high pass out of this, can anybody help?
Cheers.

	Date: 2007-01-22 19:54:21

	By: neotec

I have checked the peak output of this filter and especially for low frequences ... there is a simple fix, which makes it sound better with low frequences: change the line in Set(...) that reads 'this->gain = bd * 0.5f;' to 'this->gain = bd;'

	Date: 2007-01-22 22:27:11

	By: moc.oohay@bob

Thanks for the quick reply. I've tried your change and it's made a slight tonal difference here, but the tests were not particularly scientific. I've discovered more detail in the problem, and it's one that has been commented on with other filters: If I sweep the filter quickly up or down the low frequencies it blows out really badly, even with zero Q. I'm new to filter math, so excuse my ignorance if this is a common thing with Butterworth.

	Date: 2007-01-23 12:54:03

	By: neotec

Yep ... this filter reacts very extreme on fast cutoff changes. I've added a function to my VST Synthesizer, which 'fades' the cutoff value from actual value to the desired one in about 0.05 seconds. My modulation envelopes do have similar restrictions concerning speed.

	Date: 2007-01-23 16:35:51

	By: neotec

If you want to know how this filter sounds, visit the kvraudio forum, and search here: "KVR Forum » Instruments" for "Cetone VST Plugins".

	Date: 2007-01-29 21:57:52

	By: moc.erehwon@ydobon

I'm wondering about that tanh in the "Set."

Could replace with a pade appromimation, maybe. What is the range of inputs going into it?

In other words, how small and big does this get?...

this->t3 * cutoff

	Date: 2007-01-29 22:06:28

	By: moc.dniftnacuoyerehwemos@tsaot

Possible small optimization. It depends on how smart your compiler is, but sections like this...

 output = new_hist + this->history3 * 2.f;
 output += this->history4;

can be changed to this to change the multiply to an addition:

output = this->history3;
output += output+new_Hist+this->history4;

	Date: 2007-01-30 03:05:05

	By: moc.dniftnacuoyerehwemos@tsaot

While I'm at it, one of these divisions can easily be switched to a multiply...

 b1 = (1.847759f / q) / wp;

b1=(1.847759f/(q*wp);

	Date: 2007-02-04 19:32:55

	By: moc.oohay@bob

Four times oversampling removes the problems with fast cut-off sweeps at low values.
This filter has the same shape as a normal biquad filter, with a more pronounced resonance boost.

	Date: 2008-01-12 20:42:34

	By: gro.lortnocdnim@gro.psdcisum

Why would oversampling solve the problem? If you over-sample, the poles have to reach even further into the relative frequencies, and stability would become more of a problem AFAICT.

	Date: 2008-01-21 14:58:55

	By: moc.oohay@bob

It just seems to. If you 4X over-sample, then it gives it a 4X chance to recover from each sweep change, presuming you're not changing the filter cut-off at 4X also.

	Date: 2008-01-25 14:46:31

	By: erehwon.ku.oc.snosrapsd@psdcisum

thing is with 4X oversampling on this is that you'll be reducing precision on omega (wp here), and so should probably shift to double rather than float to help accuracy.

	Date: 2013-04-24 02:48:07

	By: moc.liam@ttocs

Did anyone figure out how to get a high pass out of this?

Thanks!

C++ class implementation of RBJ Filters

	Author or source: moc.xinortceletrams@urugra

	Created: 2002-12-13 01:37:52

	Linked files: CFxRbjFilter.h.

notes

[WARNING: This code is not FPU undernormalization safe!]

C-Weighed Filter

	Author or source: ed.luosfosruoivas@naitsirhC

	Type: digital implementation (after bilinear transform)

	Created: 2006-07-12 19:12:16

notes

unoptimized version!

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	First prewarp the frequency of both poles:

K1 = tan(0.5*Pi*20.6 / SampleRate) // for 20.6Hz
K2 = tan(0.5*Pi*12200 / SampleRate) // for 12200Hz

Then calculate the both biquads:

 b0 = 1
 b1 = 0
 b2 =-1
 a0 = ((K1+1)*(K1+1)*(K2+1)*(K2+1));
 a1 =-4*(K1*K1*K2*K2+K1*K1*K2+K1*K2*K2-K1-K2-1)*t;
 a2 =- ((K1-1)*(K1-1)*(K2-1)*(K2-1))*t;

and:

 b3 = 1
 b4 = 0
 b5 =-1
 a3 = ((K1+1)*(K1+1)*(K2+1)*(K2+1));
 a4 =-4*(K1*K1*K2*K2+K1*K1*K2+K1*K2*K2-K1-K2-1)*t;
 a5 =- ((K1-1)*(K1-1)*(K2-1)*(K2-1))*t;

Now use an equation for calculating the biquads like this:

Stage1 = b0*Input + State0;
State0 = + a1/a0*Stage1 + State1;
State1 = b2*Input + a2/a0*Stage1;

Output = b3*Stage1 + State2;
State2 = + a4/a3*Output + State2;
State3 = b5*Stage1 + a5/a3*Output;

Comments

	Date: 2006-07-12 21:07:28

	By: ed.luosfosruoivas@naitsirhC

You might still need to normalize the filter output. You can do this easily by multipliing either the b0 and b2 or the b3 and b5 with a constant.
Typically the filter is normalized to have a gain of 0dB at 1kHz

Also oversampling of this filter might be useful.

Cascaded resonant lp/hp filter

	Author or source: ed.bew@raebybot

	Type: lp+hp

	Created: 2002-12-16 19:02:11

notes

// Cascaded resonant lowpass/hipass combi-filter
// The original source for this filter is from Paul Kellet from
// the archive. This is a cascaded version in Delphi where the
// output of the lowpass is fed into the highpass filter.
// Cutoff frequencies are in the range of 0<=x<1 which maps to
// 0..nyquist frequency

// input variables are:
// cut_lp: cutoff frequency of the lowpass (0..1)
// cut_hp: cutoff frequency of the hipass (0..1)
// res_lp: resonance of the lowpass (0..1)
// res_hp: resonance of the hipass (0..1)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	var n1,n2,n3,n4:single; // filter delay, init these with 0!
 fb_lp,fb_hp:single; // storage for calculated feedback
const p4=1.0e-24; // Pentium 4 denormal problem elimination

function dofilter(inp,cut_lp,res_lp,cut_hp,res_hp:single):single;
begin
 fb_lp:=res_lp+res_lp/(1-cut_lp);
 fb_hp:=res_hp+res_hp/(1-cut_lp);
 n1:=n1+cut_lp*(inp-n1+fb_lp*(n1-n2))+p4;
 n2:=n2+cut_lp*(n1-n2);
 n3:=n3+cut_hp*(n2-n3+fb_hp*(n3-n4))+p4;
 n4:=n4+cut_hp*(n3-n4);
 result:=i-n4;
end;

Comments

	Date: 2003-07-13 07:43:17

	By: moc.biesnnamreh@eciffo

I guess the last line should read
 result:=inp-n4;

Right?

Bye,

 Hermann

	Date: 2003-12-26 19:56:21

	By: moc.liamtoh@tsvreiruoc

excuse me which type is? 6db/oct or 12 or what?

thanks

	Date: 2004-02-02 15:43:00

	By: ed.xmg@suahtlanaitsirhc

result := n2-n4

:)

	Date: 2011-01-25 17:52:08

	By: ten.raenila@ssov

WOW this is old but handy. Anyway what to do about the divide-by-zero caused by the feedback calc if the cutoff is set to 1.0?

Also, should the feedback for the hpf be:

fb_hp:=res_hp+res_hp/(1-cut_hp);

not:

fb_hp:=res_hp+res_hp/(1-cut_lp);

?

Thanks
NV

	Date: 2017-03-17 08:28:07

	By: moc.liamg@dnuosG

Nobody can see ?

There is two lowpass filters in series, no differences between them.

Cool Sounding Lowpass With Decibel Measured Resonance

	Author or source: ua.moc.ohay@renrew_bocaj_leinad

	Type: LP 2-pole resonant tweaked butterworth

	Created: 2004-09-01 17:56:44

notes

This algorithm is a modified version of the tweaked butterworth lowpass filter by Patrice
Tarrabia posted on musicdsp.org's archives. It calculates the coefficients for a second
order IIR filter. The resonance is specified in decibels above the DC gain. It can be made
suitable to use as a SoundFont 2.0 filter by scaling the output so the overall gain
matches the specification (i.e. if resonance is 6dB then you should scale the output by
-3dB). Note that you can replace the sqrt(2) values in the standard butterworth highpass
algorithm with my "q =" line of code to get a highpass also. How it works: normally q is
the constant sqrt(2), and this value controls resonance. At sqrt(2) resonance is 0dB,
smaller values increase resonance. By multiplying sqrt(2) by a power ratio we can specify
the resonant gain at the cutoff frequency. The resonance power ratio is calculated with a
standard formula to convert between decibels and power ratios (the powf statement...).

Good Luck,
Daniel Werner
http://experimentalscene.com/

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	float c, csq, resonance, q, a0, a1, a2, b1, b2;

c = 1.0f / (tanf(pi * (cutoff / samplerate)));
csq = c * c;
resonance = powf(10.0f, -(resonancedB * 0.1f));
q = sqrt(2.0f) * resonance;
a0 = 1.0f / (1.0f + (q * c) + (csq));
a1 = 2.0f * a0;
a2 = a0;
b1 = (2.0f * a0) * (1.0f - csq);
b2 = a0 * (1.0f - (q * c) + csq);

Comments

	Date: 2005-11-24 17:59:36

	By: acid_mutant[aat]yahoo[doot]com

For some reason when I tested this algorithm, even though the frequency response looked OK in my graphs - i.e. it should resonate the output didn't seem to be very resonant - it could be a phase issue, I'll keep checking.

(BTW: I use an impulse, then FFT, then display the power bands returned)

	Date: 2006-03-09 18:38:39

	By: moc.snad@snad

shouldn't it be

resonance = powf(10.0f, -(resonancedB * 0.05f));

instead of

resonance = powf(10.0f, -(resonancedB * 0.1f));

to get correct dB gain?

... since gain = 10^(dB/20) ...

	Date: 2007-01-06 04:29:10

	By: uh.etle.fni@yfoocs

Agree with the last post.

	Date: 2007-08-21 14:00:21

	By: moc.enecslatnemirepxe.ecnuob@ton.em.maps.renrewd

The algorithm was developed with a digital signal of 32-bit floating point pseudo-random white noise running through it. The level of resonance was measured by visually plotting the output of the FFT of the signal. I half agree with the second last post, i.e. dB in acoustics is not the same as dB in digital audio. Correct me if I am wrong, it is a long time since I thought about this.

	Date: 2010-12-10 23:53:27

	By: moc.oohay@tsvsoxox

there is something very wrong with this code as it is printed here, i don't expect anyone is going to make any effort to correct it or verify it.

	Date: 2015-09-14 18:11:21

	By: moc.halb@halb

You need to use 0.5 in the power function to convert from the db to the linear.

You can apply a GAIN reduction by doing the same thing but make it smaller.

GAIN = powf(10.0f, -((resonance*0.25) * 0.05));

The use the GAIN to the input of the filter. If you use it to the output and change resonance rapidly it will click.

For the gain you can change the 0.25 to 0.125 or 0.075 if you feel that it is to quiet when you turn the resonance up.

	Date: 2015-09-14 18:14:36

	By: moc.halb@halb

Correction to me previous post, I meant 0.05 in the first line.

Convert resonance as dB to q for use in filter, use this formula.

 q = powf(10.0f, -(resonanceDb * 0.05));

It will give you a value from 0 to 1. But for most butterworth you do not want zero and you want it to go a little more than one to fully exploit the resonance, so scale it like below.

For me this works to scale the q
 q = 0.1 + q * 1.5

For example, the 1.5 and 0.1 can be adjusted to suit your preference.

DC filter

	Author or source: hc.niweulb@lossor.ydna

	Type: 1-pole/1-zero DC filter

	Created: 2003-01-04 01:18:23

notes

This is based on code found in the document:
"Introduction to Digital Filters (DRAFT)"
Julius O. Smith III (jos@ccrma.stanford.edu)
(http://www-ccrma.stanford.edu/~jos/filters/)

Some audio algorithms (asymmetric waveshaping, cascaded filters, ...) can produce DC
offset. This offset can accumulate and reduce the signal/noise ratio.

So, how to fix it? The example code from Julius O. Smith's document is:
...
y(n) = x(n) - x(n-1) + R * y(n-1)
// "R" between 0.9 .. 1
// n=current (n-1)=previous in/out value
...
"R" depends on sampling rate and the low frequency point. Do not set "R" to a fixed value
(e.g. 0.99) if you don't know the sample rate. Instead set R to:
(-3dB @ 40Hz): R = 1-(250/samplerate)
(-3dB @ 30Hz): R = 1-(190/samplerate)
(-3dB @ 20Hz): R = 1-(126/samplerate)

Comments

	Date: 2003-01-04 01:58:04

	By: hc.niweulb@lossor.ydna

I just received a mail from a musicdsp reader:

'How to calculate "R" for a given (-3dB) low frequency point?'

R = 1 - (pi*2 * frequency /samplerate)

(pi=3.14159265358979)

	Date: 2003-05-10 09:11:42

	By: ten.labolgfrus@jbr

particularly if fixed-point arithmetic is used, this simple high-pass filter can create it's own DC offset because of limit-cycles. to cure that look at

http://www.dspguru.com/comp.dsp/tricks/alg/dc_block.htm

this trick uses the concept of "noise-shaping" to prevent DC in any limit-cycles.

r b-j

Delphi Class implementation of the RBJ filters

	Author or source: moc.liamtoh@retsbomyrgnayrev

	Type: Delphi class implementation of the RBJ filters

	Created: 2006-07-11 08:16:46

notes

I haven't tested this code thoroughly as it's pretty much a straight conversion from
Arguru c++ implementation.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

	 {
 RBJ Audio EQ Cookbook Filters
 A pascal conversion of arguru[AT]smartelectronix[DOT]com's
 c++ implementation.

 WARNING:This code is not FPU undernormalization safe.

 Filter Types
 0-LowPass
 1-HiPass
 2-BandPass CSG
 3-BandPass CZPG
 4-Notch
 5-AllPass
 6-Peaking
 7-LowShelf
 8-HiShelf
 }
unit uRbjEqFilters;

interface

uses math;

type
 TRbjEqFilter=class
 private
 b0a0,b1a0,b2a0,a1a0,a2a0:single;
 in1,in2,ou1,ou2:single;
 fSampleRate:single;
 fMaxBlockSize:integer;
 fFilterType:integer;
 fFreq,fQ,fDBGain:single;
 fQIsBandWidth:boolean;
 procedure SetQ(NewQ:single);
 public
 out1:array of single;
 constructor create(SampleRate:single;MaxBlockSize:integer);
 procedure CalcFilterCoeffs(pFilterType:integer;pFreq,pQ,pDBGain:single;pQIsBandWidth:boolean);overload;
 procedure CalcFilterCoeffs;overload;
 function Process(input:single):single; overload;
 procedure Process(Input:psingle;sampleframes:integer); overload;
 property FilterType:integer read fFilterType write fFilterType;
 property Freq:single read fFreq write fFreq;
 property q:single read fQ write SetQ;
 property DBGain:single read fDBGain write fDBGain;
 property QIsBandWidth:boolean read fQIsBandWidth write fQIsBandWidth;
 end;

implementation

constructor TRbjEqFilter.create(SampleRate:single;MaxBlockSize:integer);
begin
 fMaxBlockSize:=MaxBlockSize;
 setLength(out1,fMaxBlockSize);
 fSampleRate:=SampleRate;

 fFilterType:=0;
 fFreq:=500;
 fQ:=0.3;
 fDBGain:=0;
 fQIsBandWidth:=true;

 in1:=0;
 in2:=0;
 ou1:=0;
 ou2:=0;
end;

procedure TRbjEqFilter.SetQ(NewQ:single);
begin
 fQ:=(1-NewQ)*0.98;
end;

procedure TRbjEqFilter.CalcFilterCoeffs(pFilterType:integer;pFreq,pQ,pDBGain:single;pQIsBandWidth:boolean);
begin
 FilterType:=pFilterType;
 Freq:=pFreq;
 Q:=pQ;
 DBGain:=pDBGain;
 QIsBandWidth:=pQIsBandWidth;

 CalcFilterCoeffs;
end;

procedure TRbjEqFilter.CalcFilterCoeffs;
var
 alpha,a0,a1,a2,b0,b1,b2:single;
 A,beta,omega,tsin,tcos:single;
begin
 //peaking, LowShelf or HiShelf
 if fFilterType>=6 then
 begin
 A:=power(10.0,(DBGain/40.0));
 omega:=2*pi*fFreq/fSampleRate;
 tsin:=sin(omega);
 tcos:=cos(omega);

 if fQIsBandWidth then
 alpha:=tsin*sinh(log2(2.0)/2.0*fQ*omega/tsin)
 else
 alpha:=tsin/(2.0*fQ);

 beta:=sqrt(A)/fQ;

 // peaking
 if fFilterType=6 then
 begin
 b0:=1.0+alpha*A;
 b1:=-2.0*tcos;
 b2:=1.0-alpha*A;
 a0:=1.0+alpha/A;
 a1:=-2.0*tcos;
 a2:=1.0-alpha/A;
 end else
 // lowshelf
 if fFilterType=7 then
 begin
 b0:=(A*((A+1.0)-(A-1.0)*tcos+beta*tsin));
 b1:=(2.0*A*((A-1.0)-(A+1.0)*tcos));
 b2:=(A*((A+1.0)-(A-1.0)*tcos-beta*tsin));
 a0:=((A+1.0)+(A-1.0)*tcos+beta*tsin);
 a1:=(-2.0*((A-1.0)+(A+1.0)*tcos));
 a2:=((A+1.0)+(A-1.0)*tcos-beta*tsin);
 end;
 // hishelf
 if fFilterType=8 then
 begin
 b0:=(A*((A+1.0)+(A-1.0)*tcos+beta*tsin));
 b1:=(-2.0*A*((A-1.0)+(A+1.0)*tcos));
 b2:=(A*((A+1.0)+(A-1.0)*tcos-beta*tsin));
 a0:=((A+1.0)-(A-1.0)*tcos+beta*tsin);
 a1:=(2.0*((A-1.0)-(A+1.0)*tcos));
 a2:=((A+1.0)-(A-1.0)*tcos-beta*tsin);
 end;
 end else //other filter types
 begin
 omega:=2*pi*fFreq/fSampleRate;
 tsin:=sin(omega);
 tcos:=cos(omega);
 if fQIsBandWidth then
 alpha:=tsin*sinh(log2(2)/2*fQ*omega/tsin)
 else
 alpha:=tsin/(2*fQ);
 //lowpass
 if fFilterType=0 then
 begin
 b0:=(1-tcos)/2;
 b1:=1-tcos;
 b2:=(1-tcos)/2;
 a0:=1+alpha;
 a1:=-2*tcos;
 a2:=1-alpha;
 end else //hipass
 if fFilterType=1 then
 begin
 b0:=(1+tcos)/2;
 b1:=-(1+tcos);
 b2:=(1+tcos)/2;
 a0:=1+alpha;
 a1:=-2*tcos;
 a2:=1-alpha;
 end else //bandpass CSG
 if fFilterType=2 then
 begin
 b0:=tsin/2;
 b1:=0;
 b2:=-tsin/2;
 a0:=1+alpha;
 a1:=-1*tcos;
 a2:=1-alpha;
 end else //bandpass CZPG
 if fFilterType=3 then
 begin
 b0:=alpha;
 b1:=0.0;
 b2:=-alpha;
 a0:=1.0+alpha;
 a1:=-2.0*tcos;
 a2:=1.0-alpha;
 end else //notch
 if fFilterType=4 then
 begin
 b0:=1.0;
 b1:=-2.0*tcos;
 b2:=1.0;
 a0:=1.0+alpha;
 a1:=-2.0*tcos;
 a2:=1.0-alpha;
 end else //allpass
 if fFilterType=5 then
 begin
 b0:=1.0-alpha;
 b1:=-2.0*tcos;
 b2:=1.0+alpha;
 a0:=1.0+alpha;
 a1:=-2.0*tcos;
 a2:=1.0-alpha;
 end;
 end;

 b0a0:=b0/a0;
 b1a0:=b1/a0;
 b2a0:=b2/a0;
 a1a0:=a1/a0;
 a2a0:=a2/a0;
end;

function TRbjEqFilter.Process(input:single):single;
var
 LastOut:single;
begin
 // filter
 LastOut:= b0a0*input + b1a0*in1 + b2a0*in2 - a1a0*ou1 - a2a0*ou2;

 // push in/out buffers
 in2:=in1;
 in1:=input;
 ou2:=ou1;
 ou1:=LastOut;

 // return output
 result:=LastOut;
end;

{
the process method is overloaded.
use Process(input:single):single;
 for per sample processing
use Process(Input:psingle;sampleframes:integer);
 for block processing. The input is a pointer to
 the start of an array of single which contains
 the audio data.
 i.e.
 RBJFilter.Process(@WaveData[0],256);
}

procedure TRbjEqFilter.Process(Input:psingle;sampleframes:integer);
var
 i:integer;
 LastOut:single;
begin
 for i:=0 to SampleFrames-1 do
 begin
 // filter
 LastOut:= b0a0*(input^)+ b1a0*in1 + b2a0*in2 - a1a0*ou1 - a2a0*ou2;
 //LastOut:=input^;
 // push in/out buffers
 in2:=in1;
 in1:=input^;
 ou2:=ou1;
 ou1:=LastOut;

 Out1[i]:=LastOut;

 inc(input);
 end;
end;

end.

Digital RIAA equalization filter coefficients

	Author or source: Frederick Umminger

	Type: RIAA

	Created: 2002-10-14 16:33:34

notes

Use at your own risk. Confirm correctness before using. Don't assume I didn't goof
something up.

-Frederick Umminger

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	The "turntable-input software" thread inspired me to generate some coefficients for a digital RIAA equalization filter. These coefficients were found by matching the magnitude response of the s-domain transfer function using some proprietary Matlab scripts. The phase response may or may not be totally whacked.

The s-domain transfer function is

R3(1+R1*C1*s)(1+R2*C2*s)/(R1(1+R2*C2*s) + R2(1+R1*C1*s) + R3(1+R1*C1*s)(1+R2*C2*s))

where

R1 = 883.3k
R2 = 75k
R3 = 604
C1 = 3.6n
C2 = 1n

This is based on the reference circuit found in http://www.hagtech.com/pdf/riaa.pdf

The coefficients of the digital transfer function b(z^-1)/a(z^-1) in descending powers of z, are:

44.1kHz
b = [0.02675918611906 -0.04592084787595 0.01921229297239]
a = [1.00000000000000 -0.73845850035973 -0.17951755477430]
error +/- 0.25dB

48kHz
b = [0.02675918611906 -0.04592084787595 0.01921229297239]
a = [1.00000000000000 -0.73845850035973 -0.17951755477430]
error +/- 0.15dB

88.2kHz
b = [0.04872204977233 -0.09076930609195 0.04202280710877]
a = [1.00000000000000 -0.85197860443215 -0.10921171201431]
error +/- 0.01dB

96kHz
b = [0.05265477122714 -0.09864197097385 0.04596474352090]
a = [1.00000000000000 -0.85835597216218 -0.10600020417219]
error +/- 0.006dB

Comments

	Date: 2007-02-24 13:55:58

	By: moc.liamtoh@0691_ptj

Hmm... since I'm having lack in knowledge of utilizing this type of 'data' in programming, could someone be kind and give a short code example of its usage (@ some samplerate), lets say, using Basic/VB language (though, C-C++/Pascal-Delphi/Java goes as well)?

JT

	Date: 2007-03-01 13:20:51

	By: ku.oc.snosrapsdTUOEMEKAT@psdcisum

they are coefficients to plug into a std biquad. look through the filters section of musicdsp you'll find a load of examples of biquads (essentially two quadratic equations which are solved together to do the DSP stuff).

It's of the form
out = b0*in[0] + b1*in[-1] + b2*in[-2] - a1*out[-1] - a2*out[-2]

where in[0,-1,-2] are the current input and the previous 2; and out[-1,-2] are the last two outputs.

Generally the previous output coefficients are subtracted, but sometimes the signs are swapped, and they are added like the inputs.

some algorithms use a for ins and b for outs, others use them the other way around. Generally (but not always) there are 3 input and 2 output coeffs, so you can work out which is which.

HTH
DSP

	Date: 2007-03-02 03:31:08

	By: moc.erehwon@ydobon

I don't get it. How do you set the frequency, Kenneth?

What frequencies are being passed?

	Date: 2007-03-03 09:09:29

	By: moc.liamtoh@0691_ptj

Hmm...

Since no links allowed here, I have started a topic on this matter @ KVR

topic number: 170235
topic name: "Coefficients of the digital transfer function ... How to ?"

I tried the 44.1/48kHz version and it produced quite 'bad' results .. lots of rattle in audio and the RIAA curve form is not as it should be (should be: 20Hz; ±19.27dB ... ~1kHz; ±0dB ... 20kHz; ±19.62dB). (couple of pictures linked in KVR topic).

Also, .. if this is the result in anyway, this is the 'production curve' used in mastering process ... how can it be changed to 'opposite' ...

JT

	Date: 2007-03-04 22:52:32

	By: moc.liamtoh@0691_ptj

Thanks to all so far.

I found this quote from another forum:

QUOTE:
"All you should need to do to get the complementary curve is swap the a and b
vectors, and then multiply both vectors by 1/a(0) to normalize. That will
give the coefficients for the inverse filter.".
/QUOTE

w/ a note that it was taken from one of those OPs (Frederick Umminger's) postings ... but the reference link was dead so I couldn't read the whole story. If OP or anyone else can give some light in this matter of how to make that swap w/ normalization (fully) so I could try w/ higher SR data. I did try and got values like -20.1287341287123, etc..

I actually got the 44.1/48kHz curve managed w/ help from a post in another forum. But there were nothing explained fully.

QUOTE:
"
; Filter coefficients (48kHz) for RIAA curve from Frederick
; Umminger; see
;
; b = [0.02675918611906 -0.04592084787595 0.01921229297239]
; a = [1.00000000000000 -0.73845850035973 -0.17951755477430]
; error +/- 0.15dB

; inverted filter for phono playback (48kHz):
;
; b = [0.2275882473429072 -0.1680644758323426 -0.0408560856583673]
; a = [1.0000000000000000 -1.7160778983199925 0.7179700042784745]
;
; since a[1] is too large, it must be splitted into a11 and a12

static b0=0.2275882473429072, b1=-0.1680644758323426, b2=-0.0408560856583673
static a1=.85803894915999625, a2=-0.7179700042784745
"
/QUOTE

just lots of numbers

JT

	Date: 2007-03-15 00:41:09

	By: moc.liamtoh@0691_ptj

This seem to become a monologue but, ... I'm still having issues w/ those 88.2kHz and 96kHz filter coefficients when inverted.

Noticed that when those coefficients for 88.2kHz and 96kHz are inverted, in both cases, a1 and a2 gets values which maybe are not good in equation

y[i] = b0x[i] + b1x[i-1] + b2x[i-2] - a1y[i-1] - a2y[i-1]

because of, a1 gets a negative value and its decimal part is bigger than a2 is --> " --a1y[i-1] - a2y[i-2]" --> looks like y[i] starts growing after every sample calculation. This is not an issue w/ data for 44.1kHz and 48kHz. When I change those a1/a2 decimal parts so that the abs(a1)-a2 =< 1 becomes true then filter works well (though not right recults). Also, while analyzing the VST plugin, using C.W.Buddes VST PluginAnalyzer, Delphi tracer (Watch) shows y[i] become over 1.0 after ~830 sampleframes and after 8192 sampleframes, y[i] has value of 2.488847401e+11 already (i.e. 248884740100). This shouldn't be a coding problem since a friend of mine tested these w/ SynthMaker (no coding needed) and the results were equal.

If this "-a1x[i-1]-a2x[i-2] > 1" is an issue, are there any methods to get it fixed w/o loosing the accuracy OP got into those original coefficients?

jtp

	Date: 2007-03-15 22:41:37

	By: ed.luosfosruoivas@naitsirhC

Try to plot the poles and zeroes. If there are poles outside the unit circle, your filter will be unstable!
To eliminate poles outside the unit circle, construct an allpass filter which has zeroes at the same position as the unwanted poles. They are now canceling out themself, so that you only have poles inside the unit circle. Your filter should be stable now!

All you need to know now is how to transform the filter coefficients into poles and zeroes and vice versa. If you're using delphi, you might want to have a look into the DFilter class of the open source project 'Delphi ASIO & VST Packages'.

	Date: 2007-03-24 11:53:25

	By: moc.liamtoh@0691_ptj

Thanks for your suggestion Christian.
I didn't try this allpass method because of

- I managed to get this issue rounded through another way (I have now 3rd-4th order filters working here as VST and standalone for all those four samplerates mentioned here and I'm also considering to add ones for 174.6 kHz and 192 kHz as well)

- as I'm learning these filter matters and delphi programming, I would have needed some good examples to do this

My final thoughts over those coefficients listed in F. Ummingers post:

As those coefficients needs to be inversed before getting the RIAA reproduction done, I can't say 100% sure if any of those works properly then (maybe one set does).
When inversion is done as was suggested elsewhere:
- swap a/b vectors,
- multiply all with 1/a0 and
- optional: 'normalize' b's by dividing every b with sum of b's
, only coefficients for 44.1kHz and 48kHz seem to become stable but, which one is the right one then since, those original coefficients are same for both? I suppose those can't be equal coefficients because this is sample accurate filter in question, or can those?. If not then, which one is the correct one ... you can find it out by trying (least the resulting sound quality should tell this). Maybe Hannes Rohde (quote in my 3rd post) went through this and found the right ones or just used those given for 48kHz (SoundBlaster DSP is internally 48kHz).

What's wrong with those others? It seems that both, 88.2kHz and 96kHz coefficients as inversed, produces unstable filter which won't work (see my previous post)

jtp

	Date: 2007-04-22 12:03:52

	By: moc.liamtoh@0691_ptj

FYI, here are working filter coefficients for biquad implementation of RIAA EQ Reproduction filters:

44.1kHz:
a = [1.0000000000 -1.7007240000 0.7029381524]
b = [1.0000000000 -0.7218922000 -0.1860520545]
error ~0.23dB

48kHz:
a = [1.0000000000 -1.7327655000 0.7345534436]
b = [1.0000000000 -0.7555521000 -0.1646257113]
error ~0.14dB

88.2kHz:
a = [1.0000000000 -1.8554648000 0.8559721393]
b = [1.0000000000 -0.8479577000 -0.1127631993]
error 0.008dB

and 96kHz:
a = [1.0000000000 -1.8666083000 0.8670382873]
b = [1.0000000000 -0.8535331000 -0.1104595113]
error ~0.006dB

NOTES:

- By swapping the a1<->b1 and a2<->b2 you'll get the production filter.

- All these given filter coefficients produces a bit gained filter (~+12.5dB or so) so, if you like to adjust the 1 kHz = 0dB, it can be done quite accurately by finding linear difference using software like Tobybear's FilterExplorer. Enter coefficients into FilterExplorer, by moving mouse cursor over the plotted magnitude curve in magnitude plot window, find/point the ~1kHz position and then check the magnitude value (value inside the brackets) found in info field. Use this value as divider for b coefficients.

jtp
jiiteepee@yahoo.se

	Date: 2009-08-07 18:43:49

	By: ude.nretsewhtron.ece@ztub

The amplitude response of Umminger's Fs = 48 kHz filter gives an excellent approximation to the RIAA amplitude response curve but Umminger suggests the phase response may be "totally whacked". Actually, the phase response is pretty good, provided "phase response" is interpreted properly.
Umminger's filters are carelessly presented. The 44.1 kHz version is not there at all, and the 88.2 kHz and 96 kHz cases have reproduction filter poles > 1 that should be replaced by their reciprocals. For that reason I shall use the coefficients given by jtp, though the general approach is Umminger's.
When computing phase of the digital filter, a linear phase term may be added to the computation as convenient, as such a term corresponds to time shift. That is, two phase responses are for our practical purposes equivalent if they differ only by a phase linear in frequency f. The RIAA analog filter has an asymptotic phase of –90 deg and Umminger's asymptotic (Fs/2) phase is 0, so one may conjecture that a term 2Df/Fs ought to be added to the computation of the digital filter phase, where D = -90. Actually, there is no reason to restrict D to multiples of 90.
In jtp's Fs=44.1 kHz case, an adjustment to the computed phase using D = -65.5 results in maximum computed phase error < 1.5 deg over the range 30 Hz – 10 kHz, while the computation using D = -75.75 results in maximum computed phase error < 5.2 deg over the range 30 Hz – 20 kHz. Of course the digital filter itself is independent of D, which is used only to interpret the phase response. One is, in effect, comparing the output of the digital filter with the output of the RIAA analog filter delayed by D/180 sample intervals. The digital filter itself remains as given by jtp.
In jtp's Fs=48 kHz case use D = -68 for a phase error < 1.2 deg over the range 30 Hz – 10 kHz, and D = -75 for a phase error < 3.8 deg over the range 30 Hz – 20 kHz.
In jtp's Fs=88.2 kHz case use D = -72 for a phase error < 0.31 deg over the range 30 Hz – 10 kHz, and D = -72.8 for a phase error < 0.5 deg over the range 30 Hz – 20 kHz.
In jtp's Fs=96 kHz case use D = -72.4 for a phase error < 0.30 deg over the range 30 Hz – 10 kHz, and D = -72.8 for a phase error < 0.375 deg over the range 30 Hz – 20 kHz.
In the Fs = 44.1 or 48 kHz cases, if a max phase error, over 30 Hz – 20 kHz, of about 0.5 deg is wanted, then one can double the sample rate in the usual way using a linear phase FIR interpolating filter, then do equalization at sample rate 88.2 or 96 kHz, decimating the output by a factor 2. August 7, 2009

Direct Form II biquad

	Author or source: es.tuanopx@kileib.trebor

	Created: 2009-11-16 08:46:12

notes

The nominal implementation for biquads is the Direct Form I variant. But the Direct Form
II is actually more suited for calculating the biquad since it needs only 2 memory
locations, and the multiplications can be pipelined better by the compiler. In release
build, I've noted a considerable speedup when compared to DF I. When processing stereo,
the code below was ~ 2X faster. Until I develop a SIMD biquad that is faster, this will
do.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	// b0, b1, b2, a1, a2 calculated via r.b-j's cookbook
// formulae.
// m1, m2 are the memory locations
// dn is the de-denormal coeff (=1.0e-20f)

void processBiquad(const float* in, float* out, unsigned length)
{
 for(unsigned i = 0; i < length; ++i)
 {
 register float w = in[i] - a1*m1 - a2*m2 + dn;
 out[i] = b1*m1 + b2*m2 + b0*w;
 m2 = m1; m1 = w;
 }
 dn = -dn;
}

void processBiquadStereo(const float* inL,
 const float* inR,
 float* outL,
 float* outR,
 unsigned length)
{
 for(unsigned i = 0; i < length; ++i)
 {
 register float wL = inL[i] - a1*m1L - a2*m2L + dn;
 register float wR = inR[i] - a1*m1R - a2*m2R + dn;
 outL[i] = b1*m1L + b2*m2L + b0*wL;
 m2L = m1L; m1L = wL;
 outR[i] = b1*m1R + b2*m2R + b0*wR;
 m2R = m1R; m1R = wR;
 }
 dn = -dn;
}

Comments

	Date: 2010-01-13 13:44:09

	By: moc.suomyn@ona

true, this structure is faster. but it is also (even) more sensitive to coefficients changes, so it becomes unstable quite fast compaerd to the DF I form. I'd really like to know if there's a way to change coefficients and at the same time time changing the history of the filter for avoiding unstability.

	Date: 2012-01-31 20:43:12

	By: earlevel

Use direct form I (single accumulation point) when using fixed-point processors. For floating point, use direct form II transposed, which has superior numerical characteristics to direct form II (non-transposed).

Direct form II

	Author or source: Fuzzpilz

	Type: generic

	Created: 2004-06-28 10:42:44

notes

I've noticed there's no code for direct form II filters in general here, though probably
many of the filter examples use it. I haven't looked at them all to verify that, but there
certainly doesn't seem to be a snippet describing this.

This is a simple direct form II implementation of a k-pole, k-zero filter. It's a little
faster than (a naive, real-time implementation of) direct form I, as well as more
numerically accurate.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	Direct form I pseudocode:

y[n] = a[0]*x[n] + a[1]*x[n-1] + .. + a[k]*x[n-k]
 - b[1]*y[n-1] - .. - b[k]*y[n-k];

Simple equivalent direct form II pseudocode:

y[n] = a[0]*x[n] + d[0];
d[0] = a[1]*x[n] - b[1]*y[n] + d[1];
d[1] = a[2]*x[n] - b[2]*y[n] + d[2];
.
.
d[k-2] = a[k-1]*x[n] - b[k-1]*y[n] + d[k-1];
d[k-1] = a[k]*x[n] - b[k]*y[n];

For example, a biquad:

out = a0*in + a1*h0 + a2*h1 - b1*h2 - b2*h3;
h1 = h0;
h0 = in;
h3 = h2;
h2 = out;

becomes

out = a0*in + d0;
d0 = a1*in - b1*out + d1;
d1 = a2*in - b2*out;

Comments

	Date: 2007-02-21 17:31:20

	By: uh.etle.fni@yfoocs

I think the per sample denormal number elimination on x87 FPUs is more difficult, since you need to check for denormals at 3 places instead of one (if I'm right).

	Date: 2007-06-11 16:44:05

	By: moc.liamg@sgninnejtg

Are the constants (a and b) wrong here. Don't they need to be switched? If you look at like wikipedia that's the case and it makes more since. I'm trying to implement a low pass filter at 25mhz passband edge. I'm getting alot of fluctuation in my output more that expect. Any suggestions?

int main(int argc, char *argv[])
{
double b[3] = {1,2,1};
double a1[3] = {1,-1.9995181705254206,0.99952100328066507};
//double a1[3] = {1,-1.9252217796690612,0.95315661147483732};
double a2[3] = {1,-1.9985996261556458,0.99860245760957123};
double a3[3] = {1,-1.9977949691405856,0.99779779945453828};
double a4[3] = {1,-1.9971690447494761,0.99717187417666975};
double a5[3] = {1,-1.9967721889631873,0.9967750178281477};
double a6[2] = {1, -0.99831813425055116};
double d[3] = {0};
double y[5][3] = {0};
double out[2] = {0};
double x[3]={0}, x1,x2,in;
double i=0;
char wait;
while(i<10000000)
{
x1 = sin(2*10000*3.14159265*i);
x2 = sin(2*10000*3.14159265*i-3.14159265);
in = x1 * x2;

x[0] = in * 7.0818881108085789e-7;

y[0][0] = b[0]*x[0] + b[1]*x[1] + b[2]*x[2] - a1[1]*y[0][1] - a1[2]*y[0][1];
y[0][1] = y[0][0];
x[2] = x[1];
x[1] = x[0];
//
y[0][0] = y[0][0] * 7.0786348128153693e-7;
y[1][0] = b[0]*y[0][0] + b[1]*y[0][1] + b[2]*y[0][2] - a2[1]*y[1][1] - a2[2]*y[1][1];
y[0][2] = y[0][1];
y[0][1] = y[0][0];
y[1][1] = y[1][0];
//
y[1][0] = y[1][0] * 7.0757848807506174e-7;
y[2][0] = b[0]*y[1][0] + b[1]*y[1][1] + b[2]*y[1][2] - a3[1]*y[2][1] - a3[2]*y[2][1];
y[1][2] = y[1][1];
y[1][1] = y[1][0];
y[2][1] = y[2][0];
//
y[2][0] = y[2][0] * 7.0735679834155469e-7;
y[3][0] = b[0]*y[2][0] + b[1]*y[2][1] + b[2]*y[2][2] - a4[1]*y[3][1] - a4[2]*y[3][1];
y[2][2] = y[2][1];
y[2][1] = y[2][0];
y[3][1] = y[3][0];
//
y[3][0] = y[3][0] * 7.0721624006526327e-007;
y[4][0] = b[0]*y[3][0] + b[1]*y[3][1] + b[2]*y[3][2] - a5[1]*y[4][1] - a5[2]*y[4][1];
y[3][2] = y[3][1];
y[3][1] = y[3][0];
y[4][1] = y[4][0];
//
/*y[4][0] = y[4][0]* 0.000840932874724457;
out[0] = 1*y[4][0] + 1*y[4][1] - a6[1]*out[1];
y[4][1] = y[4][0];
out[1] = out[0];*/

cout<<y[4][0]<<"\n";

i+=.1;
}

	Date: 2009-03-23 07:17:12

	By: es.tuanopx@kileib.trebor

Regarding denormals: Don't check for them. Prevent them by adding a small value (~1e-20) to the filter memory pipeline.

	Date: 2009-03-23 18:15:40

	By: es.tuanopx@kileib.trebor

Processing a single biquad doesn't benefit much (if any) from doing a DF II implementation. However, if you'd process stereo, the DF II variant is very suitable for interleaving of non-dependent calculations, making it easier for the compiler to generate effective code. Actually, the DF II stereo implementation below is more than 2 times faster than the naive DF I stereo one:

struct stereo_biquad
{
 float b0,b1,b2,a1,a2 // From rb-j's cookbook with a0 normalized to 1.0
 float lm1,lm2,rm1,rm2; // Filter state
 float dn; // de-denormal coeff (1.0e-20f)
};

void processStereoBiquadDF2(
 struct stereo_biquad& bq,
 const float* inL,
 const float* inR,
 float* outL,
 float* outR,
 unsigned length)
{
 for (unsigned i = 0; i < length; ++i)
 {
 register float w1 = inL[i] - bq.a1*bq.lm1 - bq.a2*bq.lm2 + bq.dn;
 register float w2 = inR[i] - bq.a1*bq.rm1 - bq.a2*bq.rm2 + bq.dn;
 outL[i] = bq.b1*bq.lm1 + bq.b2*bq.lm2 + bq.b0*w1;
 bq.lm2 = bq.lm1; bq.lm1 = w1;
 outR[i] = bq.b1*bq.rm1 + bq.b2*bq.rm2 + bq.b0*w2;
 bq.rm2 = bq.rm1; bq.rm1 = w2;
 }
 bq.dn = -bq.dn;
}

Fast Downsampling With Antialiasing

	Author or source: moc.liamg@tramum

	Created: 2005-12-22 20:34:58

notes

A quick and simple method of downsampling a signal by a factor of two with a useful amount
of antialiasing. Each source sample is convolved with { 0.25, 0.5, 0.25 } before
downsampling.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	int filter_state;

/* input_buf can be equal to output_buf */
void downsample(int *input_buf, int *output_buf, int output_count) {
 int input_idx, input_end, output_idx, output_sam;
 input_idx = output_idx = 0;
 input_end = output_count * 2;
 while(input_idx < input_end) {
 output_sam = filter_state + (input_buf[input_idx++] >> 1);
 filter_state = input_buf[input_idx++] >> 2;
 output_buf[output_idx++] = output_sam + filter_state;
 }
}

Comments

	Date: 2006-01-06 11:22:36

	By: ku.oc.mapson.snosrapsd@psd

I see this is designed for integers; what are you thoughts on altering it to floats and doing simple division rather than bit shifts?

	Date: 2006-01-07 01:35:56

	By: moc.liamg@tramum

It will work fine in floating point. I would probably use multiplication rather than division though, as I would expect that to be faster (ie. >> 1 --> *0.5, >>2 --> *0.25).

	Date: 2006-03-12 01:55:30

	By: ude.drofnats.amrcc@lfd

this triangular window is still not the greatest antialiaser... but it's probably fine for something like an oversampled lowpass filter!

	Date: 2006-03-17 23:36:31

	By: moc.liamg@tramum

For my purposes(modelling a first-order-hold dac) it was fine. The counterpart to it I suppose is this one - a classic exponential decay, which gives a lovely warm sound. Each sample is convolved with { 0.5, 0.25, 0.125, ...etc }

int filter_state;

void downsample(int *input_buf, int *output_buf, int output_count) {
 int input_idx, output_idx, input_ep1;
 output_idx = 0;
 input_idx = 0;
 input_ep1 = output_count * 2;
 while(input_idx < input_ep1) {
 filter_state = (filter_state + input_buf[input_idx]) >> 1;
 output_buf[output_idx] = filter_state;
 filter_state = (filter_state + input_buf[input_idx + 1]) >> 1;
 input_idx += 2;
 output_idx += 1;
 }
}

I'm not a great fan of all these high-order filters, the mathematics are more than I can cope with :)

Cheers,
Martin

	Date: 2008-11-05 14:12:10

	By: ed.bew@ehcsa-k

Hi @ all,

what is a good initialization value of filter_state?

Greetings

Karsten

	Date: 2009-05-02 23:38:31

	By: moc.liamg@tramum

filter_state is the previous input sample * 0.25, so zero is a good starting value for a non-periodic waveform.

	Date: 2009-07-07 12:02:32

	By: moc.oohay@bob

I'm curious - as you're generating 1 sample for every 2, is it possible to then upsample with zero padding to get a half band filter at the original sample rate?

Cheers
B

Formant filter

	Author or source: Alex

	Created: 2002-08-02 18:26:59

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	/*
Public source code by alex@smartelectronix.com
Simple example of implementation of formant filter
Vowelnum can be 0,1,2,3,4 <=> A,E,I,O,U
Good for spectral rich input like saw or square
*/
//---VOWEL COEFFICIENTS
const double coeff[5][11]= {
{ 8.11044e-06,
8.943665402, -36.83889529, 92.01697887, -154.337906, 181.6233289,
-151.8651235, 89.09614114, -35.10298511, 8.388101016, -0.923313471 ///A
},
{4.36215e-06,
8.90438318, -36.55179099, 91.05750846, -152.422234, 179.1170248, ///E
-149.6496211,87.78352223, -34.60687431, 8.282228154, -0.914150747
},
{ 3.33819e-06,
8.893102966, -36.49532826, 90.96543286, -152.4545478, 179.4835618,
-150.315433, 88.43409371, -34.98612086, 8.407803364, -0.932568035 ///I
},
{1.13572e-06,
8.994734087, -37.2084849, 93.22900521, -156.6929844, 184.596544, ///O
-154.3755513, 90.49663749, -35.58964535, 8.478996281, -0.929252233
},
{4.09431e-07,
8.997322763, -37.20218544, 93.11385476, -156.2530937, 183.7080141, ///U
-153.2631681, 89.59539726, -35.12454591, 8.338655623, -0.910251753
}
};
//---
static double memory[10]={0,0,0,0,0,0,0,0,0,0};
//---
float formant_filter(float *in, int vowelnum)
{
 res= (float) (coeff[vowelnum][0] *in +
 coeff[vowelnum][1] *memory[0] +
 coeff[vowelnum][2] *memory[1] +
 coeff[vowelnum][3] *memory[2] +
 coeff[vowelnum][4] *memory[3] +
 coeff[vowelnum][5] *memory[4] +
 coeff[vowelnum][6] *memory[5] +
 coeff[vowelnum][7] *memory[6] +
 coeff[vowelnum][8] *memory[7] +
 coeff[vowelnum][9] *memory[8] +
 coeff[vowelnum][10] *memory[9]);

memory[9]= memory[8];
memory[8]= memory[7];
memory[7]= memory[6];
memory[6]= memory[5];
memory[5]= memory[4];
memory[4]= memory[3];
memory[3]= memory[2];
memory[2]= memory[1];
memory[1]= memory[0];
memory[0]=(double) res;
return res;
}

Comments

	Date: 2002-08-21 04:47:36

	By: moc.oohay@nosrednattehr

Where did the coefficients come from? Do they relate to frequencies somehow? Are they male or female? Etc.

	Date: 2002-09-20 02:45:20

	By: es.umu.gni@nhs89le

And are the coeffiecients for 44k1hz?
/stefancrs

	Date: 2002-11-17 09:16:51

	By: ten.ooleem@ooleem

It seem to be ok at 44KHz although I get quite lot of distortion with this filter.
There are typos in the given code too, the correct version looks like this i think:
float formant_filter(float *in, int vowelnum)
{
 float res= (float) (coeff[vowelnum][0]* (*in) +
 coeff[vowelnum][1] *memory[0] +
 coeff[vowelnum][2] *memory[1] +
 coeff[vowelnum][3] *memory[2] +
 coeff[vowelnum][4] *memory[3] +
 coeff[vowelnum][5] *memory[4] +
 coeff[vowelnum][6] *memory[5] +
 coeff[vowelnum][7] *memory[6] +
 coeff[vowelnum][8] *memory[7] +
 coeff[vowelnum][9] *memory[8] +
 coeff[vowelnum][10] *memory[9]);
...

(missing type and asterisk in the first calc line ;).

I tried morphing from one vowel to another and it works ok except in between 'A' and 'U' as I get a lot of distortion and sometime (depending on the signal) the filter goes into auto-oscilation.

Sebastien Metrot

	Date: 2002-12-17 20:22:08

	By: gro.kale@ybsral

How did you get the coeffiecients?

Did I miss something?

/Larsby

	Date: 2003-01-22 15:22:02

	By: es.ecid@nellah.nafets

Yeah, morphing lineary between the coefficients works just fine. The distortion I only get when not lowering the amplitude of the input. So I lower it :)

Larsby, you can approximate filter curves quite easily, check your dsp literature :)

	Date: 2003-07-07 08:45:53

	By: moc.xinortceletrams@xela

Correct, it is for sampling rate of 44kHz.
It supposed to be female (soprano), approximated with its five formants.

--Alex.

	Date: 2003-08-21 03:21:28

	By: moc.liamtoh@33reniur

Can you tell us how you calculated the coefficients?

	Date: 2003-10-04 18:42:31

	By: moc.liamtoh@sisehtnysorpitna

The distorting/sharp A vowel can be toned down easy by just changing the first coeff from 8.11044e-06 to 3.11044e-06. Sounds much better that way.

	Date: 2005-05-04 22:40:18

	By: moc.liamg@grebronj

Hi, I get the last formant (U) to self-oscillate and distort out of control whatever I feed it with. all the other ones sound fine...

any sugesstions?

Thanks,
Jonas

	Date: 2006-04-12 22:07:35

	By: if.iki@xemxet

I was playing around this filter, and after hours of debugging finally noticed that converting those coeffecients to float just won't do it. The resulting filter is not stable anymore. Doh...

I don't have any idea how to convert them, though.

	Date: 2008-10-29 00:35:27

	By: mysterious T

Fantastic, it's all I can say! Done the linear blending and open blending matrix (a-e, a-i, a-o, a-u, e-i, e-o...etc..etc..). Too much fun!

Thanks a lot, Alex!

	Date: 2010-12-14 13:16:19

	By: johnny

What about input and output range? When I feed the filter with audio data in -1 to 1 range, output doesn't stay in the same range. Maybe the input or output needs to be scaled?

Frequency warped FIR lattice

	Author or source: ten.enegatum@liam

	Type: FIR using allpass chain

	Created: 2004-08-24 11:39:28

notes

Not at all optimized and pretty hungry in terms of arrays and overhead (function requires
two arrays containing lattice filter's internal state and ouputs to another two arrays
with their next states). In this implementation I think you'll have to juggle
taps1/newtaps in your processing loop, alternating between one set of arrays and the other
for which to send to wfirlattice).

A frequency-warped lattice filter is just a lattice filter where every delay has been
replaced with an allpass filter. By adjusting the allpass filters, the frequency response
of the filter can be adjusted (e.g., design an FIR that approximates some filter. Play
with with warping coefficient to "sweep" the FIR up and down without changing any other
coefficients). Much more on warped filters can be found on Aki Harma's website (
http://www.acoustics.hut.fi/~aqi/)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	float wfirlattice(float input, float *taps1, float *taps2, float *reflcof, float lambda, float *newtaps1, float *newtaps2, int P)
// input is filter input
// taps1,taps2 are previous filter states (init to 0)
// reflcof are reflection coefficients. abs(reflcof) < 1 for stable filter
// lamba is warping (0 = no warping, 0.75 is close to bark scale at 44.1 kHz)
// newtaps1, newtaps2 are new filter states
// P is the order of the filter
{
 float forward;
 float topline;

 forward = input;
 topline = forward;

 for (int i=0;i<P;i++)
 {
 newtaps2[i] = topline;
 newtaps1[i] = float(lambda)*(-topline + taps1[i]) + taps2[i];
 topline = newtaps1[i]+forward*(reflcof[i]);
 forward += newtaps1[i]*(reflcof[i]);
 taps1[i]=newtaps1[i];
 taps2[i]=newtaps2[i];
 }
 return forward;
}

Comments

	Date: 2004-08-24 17:26:59

	By: ten.xmg@zlipzzuf

Couldn't you easily do away with newtaps entirely? As in:

for(int i=0;i<P;i++)
{
 taps1[i]=lambda*(taps1[i]-topline)+taps2[i];
 taps2[i]=topline;
 topline=taps1[i]+forward*reflcof[i];
 forward+=taps1[i]*reflcof[i];
}

I haven't had time to try this in a plugin yet, but if Maple is to be trusted at all, that works.

(2WarpDelay is nice, by the way)

	Date: 2004-08-25 07:32:40

	By: ten.enegatum@liam

haha, thanks, that's awesome! how embarassing ;)

(glad you like 2warpdelay! the warped IIR lattice is up on harma's site too, though you might save yourself time if you read the errata: http://www.acoustics.hut.fi/~aqi/papers/oops.html :()

	Date: 2008-11-12 01:15:07

	By: moc.toohay@ttevad

This looks really interesting.
How do I get the coeffs for it, and how do I invert it to get back to the original signal?
Thanks,
DaveT

Hilbert Filter Coefficient Calculation

	Author or source: ed.luosfosruoivas@naitsirhC

	Type: Uncle Hilbert

	Created: 2005-04-17 19:05:37

notes

This is the delphi code to create the filter coefficients, which are needed to phaseshift
a signal by 90°
This may be useful for an evelope detector...

By windowing the filter coefficients you can trade phase response flatness with magnitude
response flatness.

I had problems checking its response by using a dirac impulse. White noise works fine.

Also this introduces a latency of N/2!

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	type TSingleArray = Array of Single;

procedure UncleHilbert(var FilterCoefficients: TSingleArray; N : Integer);
var i,j : Integer;
begin
 SetLength(FilterCoefficients,N);
 for i:=0 to (N div 4) do
 begin
 FilterCoefficients[(N div 2)+(2*i-1)]:=+2/(PI*(2*i-1));
 FilterCoefficients[(N div 2)-(2*i-1)]:=-2/(PI*(2*i-1));
 end;
end;

Hiqh quality /2 decimators

	Author or source: Paul Sernine

	Type: Decimators

	Created: 2006-07-28 17:59:03

notes

These are /2 decimators,
Just instanciate one of them and use the Calc method to obtain one sample while inputing
two. There is 5,7 and 9 tap versions.
They are extracted/adapted from a tutorial code by Thierry Rochebois. The optimal
coefficients are excerpts of Traitement numérique du signal, 5eme edition, M Bellanger,
Masson pp. 339-346.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

	//Filtres décimateurs
// T.Rochebois
// Based on
//Traitement numérique du signal, 5eme edition, M Bellanger, Masson pp. 339-346
class Decimateur5
{
 private:
 float R1,R2,R3,R4,R5;
 const float h0;
 const float h1;
 const float h3;
 const float h5;
 public:
 Decimateur5::Decimateur5():h0(346/692.0f),h1(208/692.0f),h3(-44/692.0f),h5(9/692.0f)
 {
 R1=R2=R3=R4=R5=0.0f;
 }
 float Calc(const float x0,const float x1)
 {
 float h5x0=h5*x0;
 float h3x0=h3*x0;
 float h1x0=h1*x0;
 float R6=R5+h5x0;
 R5=R4+h3x0;
 R4=R3+h1x0;
 R3=R2+h1x0+h0*x1;
 R2=R1+h3x0;
 R1=h5x0;
 return R6;
 }
};
class Decimateur7
{
 private:
 float R1,R2,R3,R4,R5,R6,R7;
 const float h0,h1,h3,h5,h7;
 public:
 Decimateur7::Decimateur7():h0(802/1604.0f),h1(490/1604.0f),h3(-116/1604.0f),h5(33/1604.0f),h7(-6/1604.0f)
 {
 R1=R2=R3=R4=R5=R6=R7=0.0f;
 }
 float Calc(const float x0,const float x1)
 {
 float h7x0=h7*x0;
 float h5x0=h5*x0;
 float h3x0=h3*x0;
 float h1x0=h1*x0;
 float R8=R7+h7x0;
 R7=R6+h5x0;
 R6=R5+h3x0;
 R5=R4+h1x0;
 R4=R3+h1x0+h0*x1;
 R3=R2+h3x0;
 R2=R1+h5x0;
 R1=h7x0;
 return R8;
 }
};
class Decimateur9
{
 private:
 float R1,R2,R3,R4,R5,R6,R7,R8,R9;
 const float h0,h1,h3,h5,h7,h9;
 public:
 Decimateur9::Decimateur9():h0(8192/16384.0f),h1(5042/16384.0f),h3(-1277/16384.0f),h5(429/16384.0f),h7(-116/16384.0f),h9(18/16384.0f)
 {
 R1=R2=R3=R4=R5=R6=R7=R8=R9=0.0f;
 }
 float Calc(const float x0,const float x1)
 {
 float h9x0=h9*x0;
 float h7x0=h7*x0;
 float h5x0=h5*x0;
 float h3x0=h3*x0;
 float h1x0=h1*x0;
 float R10=R9+h9x0;
 R9=R8+h7x0;
 R8=R7+h5x0;
 R7=R6+h3x0;
 R6=R5+h1x0;
 R5=R4+h1x0+h0*x1;
 R4=R3+h3x0;
 R3=R2+h5x0;
 R2=R1+h7x0;
 R1=h9x0;
 return R10;
 }
};

Karlsen

	Author or source: Best Regards,Ove Karlsen

	Type: 24-dB (4-pole) lowpass

	Created: 2003-04-05 06:57:19

notes

There's really not much voodoo going on in the filter itself, it's a simple as possible:

pole1 = (in * frequency) + (pole1 * (1 - frequency));

Most of you can probably understand that math, it's very similar to how an analog
condenser works.
Although, I did have to do some JuJu to add resonance to it.
While studing the other filters, I found that the feedback phase is very important to how
the overall
resonance level will be, and so I made a dynamic feedback path, and constant Q
approximation by manipulation
of the feedback phase.
A bonus with this filter, is that you can "overdrive" it... Try high input levels..

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	// Karlsen 24dB Filter by Ove Karlsen / Synergy-7 in the year 2003.
// b_f = frequency 0..1
// b_q = resonance 0..50
// b_in = input
// to do bandpass, subtract poles from eachother, highpass subtract with input.

 float b_inSH = b_in // before the while statement.

 while (b_oversample < 2) { //2x oversampling (@44.1khz)
 float prevfp;
 prevfp = b_fp;
 if (prevfp > 1) {prevfp = 1;} // Q-limiter

 b_fp = (b_fp * 0.418) + ((b_q * pole4) * 0.582); // dynamic feedback
 float intfp;
 intfp = (b_fp * 0.36) + (prevfp * 0.64); // feedback phase
 b_in = b_inSH - intfp; // inverted feedback

 pole1 = (b_in * b_f) + (pole1 * (1 - b_f)); // pole 1
 if (pole1 > 1) {pole1 = 1;} else if (pole1 < -1) {pole1 = -1;} // pole 1 clipping
 pole2 = (pole1 * b_f) + (pole2 * (1 - b_f)); // pole 2
 pole3 = (pole2 * b_f) + (pole3 * (1 - b_f)); // pole 3
 pole4 = (pole3 * b_f) + (pole4 * (1 - b_f)); // pole 4

 b_oversample++;
 }
 lowpassout = b_in;

Comments

	Date: 2003-08-08 18:35:52

	By: moc.7-ygrenys@evo

Hi.
Seems to be a slight typo in my code.
lowpassout = pole4; // ofcourse :)

Best Regards,
Ove Karlsen

	Date: 2003-09-20 15:31:19

	By: moc.tidosha@ttam

Hi Ove, we spoke once on the #AROS IRC channel... I'm trying to put this code into a filter object, but I'm wandering what datatype the input and output should be?

I'm processing my audio data in packets of 8000 signed words (16 bits) at a time. can I put one audio sample words into this function? Since it seems to require a floating point input!

Thanks

	Date: 2004-05-17 18:49:43

	By: moc.tsv-nashi@edoc_evo

Hi Matt.

Yes, it does indeed need float inputs.

Best Regards,
Ove Karlsen.

	Date: 2005-03-20 11:36:07

	By: se.arret@htrehgraknu

Can somebody explain exactly howto make the band Pass and high pass, i tried as explained and don't work exactly as expected

highpass = in - pole4

make "some kind of highpass", but not as expected
cut frequency

and for band pass, how we substract the poles between them ?

pole4-pole3-pole2-pole1 ?
pole1-pole2-pole3-pole4 ?

Also, is there a way to get a Notch ?

	Date: 2005-03-22 14:14:21

	By: ed.luosfosruoivas@naitsirhC

Below you will find an object pascal version of the filter.

L=Lowpass
H=Highpass
N=Notch
B=Bandpass

Regards,

Christian

--
unit KarlsenUnit;

interface

type
 TKarlsen = class
 private
 fQ : Single;
 fF1,fF : Single;
 fFS : Single;
 fTmp : Double;
 fOS : Byte;
 fPole : Array[1..4] of Single;
 procedure SetFrequency(v:Single);
 procedure SetQ(v:Single);
 public
 constructor Create;
 destructor Destroy; override;
 procedure Process(const I : Single; var L,B,N,H: Single);
 property Frequency: Single read fF write SetFrequency;
 property SampleRate: Single read fFS write fFS;
 property Q: Single read fQ write SetQ;
 property OverSample: Byte read fOS write fOS;
 end;

implementation

uses sysutils;

const kDenorm = 1.0e-24;

constructor TKarlsen.Create;
begin
 inherited;
 fFS:=44100;
 Frequency:=1000;
 fOS:=2;
 Q:=1;
end;

destructor TKarlsen.Destroy;
begin
 inherited;
end;

procedure TKarlsen.SetFrequency(v:Single);
begin
 if fFS<=0 then raise exception.create('Sample Rate Error!');
 if v<>fF then
 begin
 fF:=v;
 fF1:=fF/fFs; // fF1 range from 0..1
 end;
end;

procedure TKarlsen.SetQ(v:Single);
begin
 if v<>fQ then
 begin
 if v<0 then fQ:=0 else
 if v>50 then fQ:=50 else
 fQ:=v;
 end;
end;

procedure TKarlsen.Process(const I : Single; var L,B,N,H: Single);
var prevfp : Single;
 intfp : Single;
 o : Integer;
begin
 for o:=0 to fOS-1 do
 begin
 prevfp:=fTmp;
 if (prevfp > 1) then prevfp:=1; // Q-limiter
 fTmp:=(fTmp*0.418)+((fQ*fPole[4])*0.582); // dynamic feedback
 intfp:=(fTmp*0.36)+(prevfp*0.64); // feedback phase
 fPole[1]:= (((I+kDenorm)-intfp) * fF1) + (fPole[1] * (1 - fF1));
 if (fPole[1] > 1)
 then fPole[1]:= 1
 else if fPole[1] < -1
 then fPole[1]:= -1;
 fPole[2]:=(fPole[1]*fF1)+(fPole[2]*(1-fF1)); // pole 2
 fPole[3]:=(fPole[2]*fF1)+(fPole[3]*(1-fF1)); // pole 3
 fPole[4]:=(fPole[3]*fF1)+(fPole[4]*(1-fF1)); // pole 4
 end;
 L:=fPole[4];
 B:=fPole[4]-fPole[1];
 N:=I-fPole[1];
 H:=I-fPole[4]-fPole[1];
end;

end.

	Date: 2005-03-29 12:24:17

	By: se.sarret@htrehgraknu

Thanks Christian!!

Anyway, i tried something similar and seems that what you call Notch is reallya Bandpass and the bandpass makes something really strange

Anyway i'm having other problems with this filter too. It seems to cut too Loow for low pass and too high for high pass. Also, resonance sets a peak far away from the cut frequency.And last but not least, the slope isn't 24 db/oct, realkly is much lesser, but not in a consistent way: sometimes is 6, sometimes 12, sometimes 20, etc

Any ideas ?

	Date: 2005-07-20 12:28:44

	By: moc.psd-nashi@liam

Your problem sounds a bit strange, maybe you should check your implementation.

Nice to see a pascal version too, Christian!

Although I really recommend one set a lower denormal threshold, maybe a 1/100, it really affects the sound of the filter. The best is probably tweaking that value in realtime to see what sounds best.
Also, doubles for the buffers.. :)

Very Best Regards,
Ove Karlsen

	Date: 2005-09-20 12:26:37

	By: ku.oc.snosrapsd@psdcisum

Christian, shouldn't your code end:
L:=fPole[4];
B:=fPole[4]-fPole[1];
//CWB posted
//N:=I-fPole[1];
//B:=I-fPole[4]-fPole[1];

//DSP posted
H:=I-fPole[4]; //Surely pole 4 would give a 24dB/Oct HP, rather than the 6dB version posted
N:=I-fPole[4]-fPole[1]; //Inverse of BP

Any thoughts, anyone?

DSP

	Date: 2005-09-23 11:15:32

	By: moc.psd-nashi@liam

This filter was really written mostly to demonstrate the Q-limiter though, and also, to write it in the most computationally effiecent way.
Here is a little more featured version.

// Karlsen, Second Order SVF type filter.

// b_in1, b_in2 stereo input
// fvar01 cutoff
// fvar02 slope
// fvar03 mode
// fvar04 res
// fvar05 cutoff/res compensation

// inits, all doubles
// b_noise = 19.19;
// filterbuffers = 0;

 b_noise = b_noise * b_noise;
 int i_noise = b_noise;
 b_noise = b_noise - i_noise;

 double b_lnoise = (b_noise - 0.5) * 2;
 double b_rnoise = ((1-b_noise) - 0.5) * 2;

 b_noise = b_noise + 19;

 b_lnoise = b_lnoise * 65536;
 b_rnoise = b_rnoise * 65536;
 if (b_lnoise > 1) {b_lnoise = 1;} else if (b_lnoise < -1) {b_lnoise = -1;}
 if (b_rnoise > 1) {b_rnoise = 1;} else if (b_rnoise < -1) {b_rnoise = -1;}

 b_lnoise = b_lnoise * 1e-24; // find optimal value
 b_rnoise = b_rnoise * 1e-24;

 b_in1 = b_in1 + (b_lnoise); // denormal prevention (also doubling as dither and analog noise).
 b_in2 = b_in2 + (b_rnoise);

 float b_slope = (1-fvar2) + 0.5;
 float b_cut = ((fvar1 * fvar1) + ((fvar1 / (b_slope)) * (1 - fvar1))) / ((1 * fvar1) + ((1 / (b_slope)) * (1 - fvar1)));
 b_cut = b_cut*b_cut; // linearize this
 float b_res = fvar4 * 100;
 int i_kmode = fvar3 * 100;

 if (b_cut > 1) {b_cut = 1;}
 if (b_cut < 0) {b_cut = 0;}

 b_in1 = (b_in1 + b_lbuffb1);
 b_in2 = (b_in2 + b_lbuffb2);

 b_lbuf09 = ((b_in1 * b_cut) + ((b_lbuf09 / b_slope) * (1 - b_cut))) / ((1 * b_cut) + ((1 / b_slope) * (1 - b_cut)));
 b_lbuf10 = ((b_in2 * b_cut) + ((b_lbuf10 / b_slope) * (1 - b_cut))) / ((1 * b_cut) + ((1 / b_slope) * (1 - b_cut)));

 b_lbuf11 = ((b_lbuf09 * b_cut) + ((b_lbuf11 / b_slope) * (1 - b_cut))) / ((1 * b_cut) + ((1 / b_slope) * (1 - b_cut)));
 b_lbuf12 = ((b_lbuf10 * b_cut) + ((b_lbuf12 / b_slope) * (1 - b_cut))) / ((1 * b_cut) + ((1 / b_slope) * (1 - b_cut)));

 if (i_kmode == 0) { //lowpass
 b_in1 = b_lbuf11;
 b_in2 = b_lbuf12;
 }
 else if (i_kmode == 1) { // bandpass
 b_in1 = b_lbuf09 - b_lbuf11;
 b_in2 = b_lbuf10 - b_lbuf12;
 }
 else if (i_kmode == 2) { // highpass
 b_in1 = b_in1 - b_lbuf11;
 b_in2 = b_in2 - b_lbuf12;
 }

 b_lbuffb1 = ((b_lbuf09 - b_lbuf11) * ((b_cut * fvar5) + 1)) * b_res;
 b_lbuffb2 = ((b_lbuf10 - b_lbuf12) * ((b_cut * fvar5) + 1)) * b_res;

 b_lbuffb1 = atan(b_lbuffb1);
 b_lbuffb2 = atan(b_lbuffb2);

Works really well with control signals, where you keep the cutoff at a constant level.
Also, a bit more useful with audio, if you linearize the cutoff.

Best Regards,
Ove Karlsen.

	Date: 2005-10-13 14:00:39

	By: ku.oc.snosrapsd@psdcisum

I was looking at the b_cut assignment, and was going through looking
at optimising it and found this:

float b_cut = ((fvar1 * fvar1) + ((fvar1 / (b_slope)) * (1 - fvar1)))
/ ((1 * fvar1) + ((1 / (b_slope)) * (1 - fvar1)));

Rename for convenience and clarity
fvar1=co
b_slope=sl

=> (co^2+(co(1-co)))

 sl

 (1*co)+(1-co)

 sl

multiply numerator & denominator by sl to even things up

=> (sl*co^2+(co(1-co)))

 (sl*co)+(1-co)

expand brackets

=> sl*co^2+co-co^2

 sl*co+1-co

refactor

=> co(sl*co+1-co)

 sl*co+1-co

(sl*co+1-co) cancels out, leaving..

=> co

if I've got anything wrong here, please pipe up..

Duncan

	Date: 2005-10-13 14:06:02

	By: ku.oc.snosrapsd@psdcisum

(actually, typing the assigment into Excel reveals the same as my proof..)

	Date: 2006-02-17 13:23:47

	By: moc.psd-nashi@liam

Final version, Stenseth, 17. february, 2006.

// Fast differential amplifier approximation

 double b_inr = b_in * b_filterdrive;
 if (b_inr < 0) {b_inr = -b_inr;}
 double b_inrns = b_inr;
 if (b_inr > 1) {b_inr = 1;}
 double b_dax = b_inr - ((b_inr * b_inr) * 0.5);
 b_dax = b_dax - b_inr;
 b_inr = b_inr + b_dax;

 b_inr = b_inr * 0.24;

 if (b_inr > 1) {b_inr = 1;}
 b_dax = b_inr - ((b_inr * 0.33333333) * (b_inr * b_inr));
 b_dax = b_dax - b_inr;
 b_inr = b_inr + b_dax;

 b_inr = b_inr / 0.24;

 double b_mul = b_inrns / b_inr; // beware of zero
 b_sbuf1 = ((b_sbuf1 - (b_sbuf1 * 0.4300)) + (b_mul * 0.4300));

 b_mul = b_sbuf1 + ((b_mul - b_sbuf1) * 0.6910);
 b_in = b_in / b_mul;

// This method sounds the best here..
// About denormals, it does not seem to be much of an issue here, probably because I input the filters with oscillators, and not samples, or other, where the level may drop below the denormal threshold for extended periods of time. However, if you do, you probably want to quantize out the information below the threshold, in the buffers, and raise/lower the inputlevel before/after the filter. Adding low levels of noise may be effective aswell. This is described somewhere else on this site.

 double b_cutsc = pow(1024,b_cut) / 1024; // perfect tracking..

 b_fbuf1 = ((b_fbuf1 - (b_fbuf1 * b_cutsc)) + (b_in * b_cutsc));
 b_in = b_fbuf1;
 b_fbuf2 = ((b_fbuf2 - (b_fbuf2 * b_cutsc)) + (b_in * b_cutsc));
 b_in = b_fbuf2;
 b_fbuf3 = ((b_fbuf3 - (b_fbuf3 * b_cutsc)) + (b_in * b_cutsc));
 b_in = b_fbuf3;
 b_fbuf4 = ((b_fbuf4 - (b_fbuf4 * b_cutsc)) + (b_in * b_cutsc));
 b_in = b_fbuf4;

Soundwise, it's somewhere between a transistor ladder, and a diode ladder..
Enjoy!

Ove Karlsen.
PS: I prefer IRL communication these days, so if you need to reach me, please dial my cellphone, +047 928 50 803.

	Date: 2006-11-03 03:51:29

	By: read@bw

Another iteration, please delete all other posts than this.

Arif Ove Karlsen's 24dB Ladder Approximation, 3.nov 2007

As you may know, The traditional 4-pole Ladder found in vintage hardware synths,
had a particular sound. The nonlinearities inherent in the suboptimal components, often
added a particular flavour to the sound.
Digital does mathematical calculations much better than any analog solution, and therefore, when the filter was emulated by digital filter types, some of the character got lost.
I believe this mainly boils down to the resonance limiting occuring in the analog version.
Therefore I have written a very fast ladder approximation, not emulating any of what may seem neccesary, such as pole saturaion, which in turn results in nonlinear cutoff frequency, and loss of volume at lower cutoffs. However this can be implemented, if wanted, by putting the neccesary saturation functions inside the code. If you seek the true analog sound, you may want to do a full differential amplifier emulation aswell.
But - I believe in the end, you would end up wanting a perfect filter, with just the touch that makes it sound analog, resonance limiting.

So here it is, Karlsen Ladder, v4. A very resource effiecent ladder. Can furthermore be optimized with asm.

rez = pole4 * rezamount; if (rez > 1) {rez = 1;}
input = input - rez;
pole1 = pole1 + ((-pole1 + input) * cutoffreq);
pole2 = pole2 + ((-pole2 + pole1) * cutoffreq);
pole3 = pole3 + ((-pole3 + pole2) * cutoffreq);
pole4 = pole4 + ((-pole4 + pole3) * cutoffreq);
output = pole4;

--

I can be reached by email @ 1a2r4i54f5o5v2ek1a1r5ls6en@3ho2tm6ail1.c5o6m!no!nums

	Date: 2013-06-21 14:42:33

	By: pleasee@otherpost

Please see
 http://musicdsp.org/showArchiveComment.php?ArchiveID=240

for the ultimate development of this filter.

Peace Be With You,
Ove Karlsen

Karlsen Fast Ladder

	Author or source: moc.liamtoh@neslrakevofira

	Type: 4 pole ladder emulation

	Created: 2007-01-08 10:49:56

notes

ATTN Admin: You should remove the old version named "Karlsen" on your website, and rather
include this one instead.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	// An updated version of "Karlsen 24dB Filter"
// This time, the fastest incarnation possible.
// The very best greetings, Arif Ove Karlsen.
// arifovekarlsen->hotmail.com

b_rscl = b_buf4; if (b_rscl > 1) {b_rscl = 1;}
b_in = (-b_rscl * b_rez) + b_in;
b_buf1 = ((-b_buf1 + b_in1) * b_cut) + b_buf1;
b_buf2 = ((-b_buf2 + b_buf1) * b_cut) + b_buf2;
b_buf3 = ((-b_buf3 + b_buf2) * b_cut) + b_buf3;
b_buf4 = ((-b_buf4 + b_buf3) * b_cut) + b_buf4;
b_lpout = b_buf4;

Comments

	Date: 2007-01-08 18:42:24

	By: moc.erehwon@ydobon

Where are the coefficients? How do I set the cutoff frequency?

	Date: 2007-01-09 09:49:18

	By: uh.etle.fni@yfoocs

The parameters are:
b_cut - cutoff freq
b_rez - resonance
b_in1 - input

Cutoff is normalized frequency in rads (2*pi*cutoff/samplerate). Stability limit for b_cut is around 0.7-0.8.

There's a typo, the input is sometimes b_in, sometimes b_in1. Anyways why do you use a b_ prefix for all your variables? Wouldn't it be more easy to read like this:

resoclip = buf4; if (resoclip > 1) resoclip = 1;
in = in - (resoclip * res);
buf1 = ((in - buf1) * cut) + buf1;
buf2 = ((buf1 - buf2) * cut) + buf2;
buf3 = ((buf2 - buf3) * cut) + buf3;
buf4 = ((buf3 - buf4) * cut) + buf4;
lpout = buf4;

Also note that asymmetrical clipping gives you DC offset (at least that's what I get), so symmetrical clipping is better (and gives a much smoother sound).

-- peter schoffhauzer

	Date: 2007-06-26 16:23:57

	By: moc.psd8rts@fira

Tee b_prefix is simply a procedure I began using when I started programming C. Influenced by the BEOS operating system. However it seemed to also make my code more readable, atleast to me. So I started using various prefixes for various things, making the variables easily reckognizable. Peter, everyone, I am now reachable on www.str8dsp.com - Do also check out the plugin offers there!

	Date: 2007-07-17 20:21:47

	By: moc.psd8rts@koa

Here's even another filter, I will probably never get around to making any product with this one so here it is, pseudo-vintage diode ladder.

 Diode Ladder, (unbuffered)

 // limit resonance, rzl, tweak smearing with fltw, 0.3230 seems to be a good vintage sound.
 in = in - rzl;
 in = in + ((-in +kbuf1) * cutoff);
 kbuf1 = in + ((-in + kbuf1) * fltw);
 in = in + ((-in +kbuf2) * cutoff);
 kbuf2 = in + ((-in + kbuf2) * fltw);
 etc..

	Date: 2007-09-09 22:37:08

	By: moc.oiduatniopxf@ved

"Cutoff is normalized frequency in rads (2*pi*cutoff/samplerate):

This seems to be valid for very low (< 200 Hz) frequencies - higher sample rates seem to be "Closer"

thanks

	Date: 2010-07-17 09:25:41

	By: moc.liamerofegapkcehc@liamerofegapkcehc

I also did a 9th order gaussian filter (minimal phase), using only 5 orders, for my limiter, which is released under the GPL LICENCE. http://www.paradoxuncreated.com

	Date: 2012-11-14 08:15:06

	By: Generalized perfect digital “ladder” filter, with the desired aspects of analog.

Hi, I have now generalized the ladder filter, into fast code, and with the desired aspects of analog, but retaining digital perfectness.

Please see my blog: http://paradoxuncreated.com/Blog/wordpress/?p=1360

Peace Be With You.

	Date: 2013-06-21 14:44:18

	By: moc.golb@eesesaelp

I have also moved domains now, and consolidated the information on this ultimate digital filter, with "analog sound", here:

http://ovekarlsen.com/Blog/abdullah-filter/

Peace Be With You!

	Date: 2016-02-14 01:31:32

	By: ove hy karlsen @ facebook.com

Karlsen Fast Ladder III - inspired by "transistors set to work as diode" type Roland filters. The best fast and non-nonsensical approximation of popular analog filter sound, as in for instance Roland SH-5, and the smaller TB-303.

//Coupled with oversampling and simple oscs you will probably get the best analog approximation.

// // for nice low sat, or sharper type low deemphasis saturation, one can use a onepole shelf before the filter.
// b_lf = b_lf + ((-b_lf + b_v) * b_lfcut); // b_lfcut 0..1
// double b_lfhp = b_v - b_lf;
// b_v = b_lf + (b_lf1hp * ((b_lfgain*0.5)+1));

 double b_rez = b_aflt4 - b_v; // no attenuation with rez, makes a stabler filter.
 b_v = b_v - (b_rez*b_fres); // b_fres = resonance amount. 0..4 typical "to selfoscillation", 0.6 covers a more saturated range.

 double b_vnc = b_v; // clip, and adding back some nonclipped, to get a dynamic like analog.
 if (b_v > 1) {b_v = 1;} else if (b_v < -1) {b_v = -1;}
 b_v = b_vnc + ((-b_vnc + b_v) * 0.9840);

 b_aflt1 = b_aflt1 + ((-b_aflt1 + b_v) * b_fenv); // straightforward 4 pole filter, (4 normalized feedback paths in series)
 b_aflt2 = b_aflt2 + ((-b_aflt2 + b_aflt1) * b_fenv);
 b_aflt3 = b_aflt3 + ((-b_aflt3 + b_aflt2) * b_fenv);
 b_aflt4 = b_aflt4 + ((-b_aflt4 + b_aflt3) * b_fenv);
 b_v = b_aflt4;

// Behave.
// Ove Hy Karlsen.

	Date: 2018-03-12 09:34:57

	By: moc.liamtoh@06rorrexatnys

Hey Ove

I am wondering about the last filter the Fast ladder diode III. Where is the input supposed to go?

Sorry, I am still learning and thanks for some great filters, btw :)

Thanks, Jakob

LP and HP filter

	Author or source: Patrice Tarrabia

	Type: biquad, tweaked butterworth

	Created: 2002-01-17 02:13:47

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	r = rez amount, from sqrt(2) to ~ 0.1
f = cutoff frequency
(from ~0 Hz to SampleRate/2 - though many
synths seem to filter only up to SampleRate/4)

The filter algo:
out(n) = a1 * in + a2 * in(n-1) + a3 * in(n-2) - b1*out(n-1) - b2*out(n-2)

Lowpass:
 c = 1.0 / tan(pi * f / sample_rate);

 a1 = 1.0 / (1.0 + r * c + c * c);
 a2 = 2* a1;
 a3 = a1;
 b1 = 2.0 * (1.0 - c*c) * a1;
 b2 = (1.0 - r * c + c * c) * a1;

Hipass:
 c = tan(pi * f / sample_rate);

 a1 = 1.0 / (1.0 + r * c + c * c);
 a2 = -2*a1;
 a3 = a1;
 b1 = 2.0 * (c*c - 1.0) * a1;
 b2 = (1.0 - r * c + c * c) * a1;

Comments

	Date: 2002-03-14 15:24:20

	By: moc.liamtoh@lossor_ydna

Ok, the filter works, but how to use the resonance parameter (r)? The range from sqrt(2)-lowest to 0.1 (highest res.) is Ok for a LP with Cutoff > 3 or 4 KHz, but for lower cutoff frequencies and higher res you will get values much greater than 1! (And this means clipping like hell)

So, has anybody calculated better parameters (for r, b1, b2)?

	Date: 2003-04-03 10:23:36

	By: moc.liamtoh@trahniak

Below is my attempt to implement the above lowpass filter in c#. I'm just a beginner at this so it's probably something that I've messed up. If anybody can offer a suggestion of what I may be doing wrong please help. I'm getting a bunch of stable staticky noise as my output of this filter currently.

	Date: 2003-04-03 10:25:15

	By: moc.liamtoh@trahniak

public class LowPassFilter
{
 /// <summary>
 /// rez amount, from sqrt(2) to ~ 0.1
 /// </summary>
 float r;
 /// <summary>
 /// cutoff frequency
 /// (from ~0 Hz to SampleRate/2 - though many
 /// synths seem to filter only up to SampleRate/4)
 ///</summary>
 float f;
 float c;

 float a1;
 float a2;
 float a3;
 float b1;
 float b2;

// float in0 = 0;
 float in1 = 0;
 float in2 = 0;

// float out0;
 float out1 = 0;
 float out2 = 0;

 private int _SampleRate;

 public LowPassFilter(int sampleRate)
 {
 _SampleRate = sampleRate;

// SetParams(_SampleRate / 2f, 0.1f);
 SetParams(_SampleRate / 8f, 1f);
 }

 public float Process(float input)
 {
 float output = a1 * input +
 a2 * in1 +
 a3 * in2 -
 b1 * out1 -
 b2 * out2;

 in2 = in1;
 in1 = input;

 out2 = out1;
 out1 = output;

 Console.WriteLine(input + ", " + output);

 return output;
 }

	Date: 2003-04-03 10:25:39

	By: moc.liamtoh@trahniak

 /// <summary>
 ///
 /// </summary>
 public float CutoffFrequency
 {
 set
 {
 f = value;
 c = (float) (1.0f / Math.Tan(Math.PI * f / _SampleRate));
 SetParams();
 }
 get
 {
 return f;
 }
 }

 /// <summary>
 ///
 /// </summary>
 public float Resonance
 {
 set
 {
 r = value;
 SetParams();
 }
 get
 {
 return r;
 }
 }

 public void SetParams(float cutoffFrequency, float resonance)
 {
 r = resonance;
 CutoffFrequency = cutoffFrequency;
 }

 /// <summary>
 /// TODO rename
 /// </summary>
 /// <param name="c"></param>
 /// <param name="resonance"></param>
 private void SetParams()
 {
 a1 = 1f / (1f + r*c + c*c);
 a2 = 2 * a1;
 a3 = a1;
 b1 = 2f * (1f - c*c) * a1;
 b2 = (1f - r*c + c*c) * a1;
 }
}

	Date: 2003-04-03 11:58:51

	By: moc.liamtoh@trahniak

Nevermind I think I solved my problem. I was missing parens around the coefficients and the variables ...(a1 * input)...

	Date: 2003-04-22 17:30:14

	By: moc.liamtoh@trahniak

After implementing the lowpass algorithm I get a loud ringing noise on some frequencies both high and low. Any ideas?

	Date: 2006-03-29 14:10:59

	By: ed.xmg@lhadl

hi,
since this is the best filter i found on the net, i really need bandpass and bandstop!!! can anyone help me with the coefficents?

	Date: 2006-05-23 18:25:18

	By: uh.etle.fni@yfoocs

AFAIK there's no separate bandpass and bandstop version of Butterworth filters. Instead, bandpass is usually done by cascading a HP and a LP filter, and bandstop is the mixed output of a HP and a LP filter. However, there's bandpass biquad code (for example RBJ biquad filters). Cheers Peter

	Date: 2006-05-28 20:15:48

	By: uh.etle.fni@yfoocs

You can save two divisions for lowpass using
 c = tan((0.5 - (f * inv_samplerate))*pi);
instead of
 c = 1.0 / tan(pi * f / sample_rate);
where inv_samplerate is 1.0/samplerate precalculated. (mul is faster than div)

However, the latter form can be approximated very well below 4kHz (at 44kHz samplerate) with
 c = 1.0 / (pi * f * inv_sample_rate);
which is far better than both of the previous two equations, because it does not use any transcendental functions. So, an optimized form is:

f0 = f * inv_sample_rate;
if (f0 < 0.1) c = 1.0 / (f0 * pi); // below 4.4k
else c = tan((0.5 - f0) * pi);

This needs only about ~60% CPU below 4.4kHz. Probably using lookup tables could make it even faster...

Mapping resonance range 0..1 to 0..self-osc:
 float const sqrt_two = 1.41421356;
 r = sqrt_two - resonance * sqrt_two;

Setting resonance in the conventional q form (like in RBJ biquads):
 r = 1.0/q;

Cheers, Peter

	Date: 2006-05-28 20:43:28

	By: uh.etle@yfoocs

However I find that this algorythm has a slight tuning error regardless of using approximation or not. 'inv_samplerate = 0.95 * samplerate' seems to give a more accurate frequency tuning.

	Date: 2006-05-29 15:50:13

	By: uh.etle.fni@yfoocs

You can use the same trick for highpass:

precalc when setting up the filter:
 inv_samplerate = 1.0 / samplerate * 0.957;
(multipying by 0.957 seems to give the most precise tuning)

and then calculating c:

f0 = f * inv_samplerate;
if (f0 < 0.05) c = (f0 * pi);
else c = tan(f0 * pi);

Now I used 0.05 instead of 0.1, thats 0.05 * 44100 = 2.2k instead of 4.4k. So, this is a bit more precise than 0.1, becuase around 3-4k it had a slight error, however, only noticeable on the analyzer when compared to the original version. This is still about two third of the logarithmic frequency scale, so it's quite a bit of a speed improvement. You can use either precision for both lowpass and highpass.

For calculating tan(), you can take some quick sin() approximation, and use:
 tan(x)=sin(x)/sin(half_pi-x)

There are many good pieces of code for that in the archive.

I tried to make some 1/x based approximations for 1.0/tan(x), here is one:

inline float tan_inv_approx(float x)
{
 float const two_div_pi = 2.0f/3.141592654f;
 if (x<0.5f) return 1.0f/x;
 else return 1.467f*(1.0f/x-two_div_pi);
}

This one is pretty fast, however it is a quite rough estimate; it has some 1-2 semitones frequency tuning error around 5-8 kHz and above 10kHz. Might be usable for synths, however, or somewhere where scientific precision is not needed.

Cheers, Peter

	Date: 2006-05-30 21:12:13

	By: uh.etle.fni@yfoocs

Sorry, forget the * 0.957 tuning, this algorythm is precise without that, the mistake was in my program. Everything else is valid, I hope.

	Date: 2008-03-11 13:31:52

	By: ur.kb@sexof

Optimization for Hipass:

c = tan(pi * f / sample_rate);

c = (c + r) * c;
a1 = 1.0 / (1.0 + c);
b1 = (1.0 - c);

out(n) = (a1 * out(n-1) + in - in(n-1)) * b1;

LPF 24dB/Oct

	Author or source: ed.luosfosruoivas@naitsirhC

	Type: Chebyshev

	Created: 2006-07-28 17:58:33

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	First calculate the prewarped digital frequency:

K = tan(Pi * Frequency / Samplerate);

Now we calc some Coefficients:

sg = Sinh(PassbandRipple);
cg = Cosh(PassbandRipple);
cg *= cg;

Coeff[0] = 1 / (cg-0.85355339059327376220042218105097);
Coeff[1] = K * Coeff[0]*sg*1.847759065022573512256366378792;
Coeff[2] = 1 / (cg-0.14644660940672623779957781894758);
Coeff[3] = K * Coeff[2]*sg*0.76536686473017954345691996806;

K *= K; // (just to optimize it a little bit)

Calculate the first biquad:

A0 = (Coeff[1]+K+Coeff[0]);
A1 = 2*(Coeff[0]-K)*t;
A2 = (Coeff[1]-K-Coeff[0])*t;
B0 = t*K;
B1 = 2*B0;
B2 = B0;

Calculate the second biquad:

A3 = (Coeff[3]+K+Coeff[2]);
A4 = 2*(Coeff[2]-K)*t;
A5 = (Coeff[3]-K-Coeff[2])*t;
B3 = t*K;
B4 = 2*B3;
B5 = B3;

Then calculate the output as follows:

Stage1 = B0*Input + State0;
State0 = B1*Input + A1/A0*Stage1 + State1;
State1 = B2*Input + A2/A0*Stage1;

Output = B3*Stage1 + State2;
State2 = B4*Stage1 + A4/A3*Output + State2;
State3 = B5*Stage1 + A5/A3*Output;

Comments

	Date: 2006-09-14 10:36:43

	By: musicdsp@Nospam dsparsons.co.uk

You've used two notations here (as admitted on KVR!)..
Updated calculation code reads:

=-=-=-= Start =-=-=-=

Calculate the first biquad:

//A0 = (Coeff[1]+K+Coeff[0]);
t = 1/(Coeff[1]+K+Coeff[0]);
A1 = 2*(Coeff[0]-K)*t;
A2 = (Coeff[1]-K-Coeff[0])*t;
B0 = t*K;
B1 = 2*B0;
B2 = B0;

Calculate the second biquad:

//A3 = (Coeff[3]+K+Coeff[2]);
t = 1/(Coeff[3]+K+Coeff[2]);
A4 = 2*(Coeff[2]-K)*t;
A5 = (Coeff[3]-K-Coeff[2])*t;
B3 = t*K;
B4 = 2*B3;
B5 = B3;

Then calculate the output as follows:

Stage1 = B0*Input + State0;
State0 = B1*Input + A1*Stage1 + State1;
State1 = B2*Input + A2*Stage1;

Output = B3*Stage1 + State2;
State2 = B4*Stage1 + A4*Output + State2;
State3 = B5*Stage1 + A5*Output;

=-=-=-= End =-=-=-=

Hope that clears up any confusion for future readers :-)

	Date: 2008-06-24 13:57:19

	By: moc.liamg@tnemelCssoR

The variable State3 is assigned a value, but is never used anywhere. Is there a reason for this?

	Date: 2008-10-17 00:40:33

	By: moc.liamg@321tiloen

Just ported this into Reaper's native JesuSonic.

There are errors in both of the codes above :D
Use this:

//start

A0 = 1/(Coeff[1]+K+Coeff[0]);
A1 = 2*(Coeff[0]-K)*A0;
A2 = (Coeff[1]-K-Coeff[0])*A0;
B0 = A0*K;
B1 = 2*B0;
B2 = B0;

A3 = 1/(Coeff[3]+K+Coeff[2]);
A4 = 2*(Coeff[2]-K)*A3;
A5 = (Coeff[3]-K-Coeff[2])*A3;
B3 = A3*K;
B4 = 2*B3;
B5 = B3;

Stage1 = B0*Input + State0;
State0 = B1*Input + A1*Stage1 + State1;
State1 = B2*Input + A2*Stage1;
Output = B3*Stage1 + State2;
State2 = B4*Stage1 + A4*Output + State3;
State3 = B5*Stage1 + A5*Output;

//end

@RossClement[AT]gmail[DOT]com
'State3' should be added in this line
-> State2 = B4*Stage1 + A4*Output + State3;

Lowpass filter for parameter edge filtering

	Author or source: Olli Niemitalo

	Created: 2002-01-17 02:06:29

	Linked files: filter001.gif.

notes

use this filter to smooth sudden parameter changes
(see linkfile!)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

	/* - Three one-poles combined in parallel
 * - Output stays within input limits
 * - 18 dB/oct (approx) frequency response rolloff
 * - Quite fast, 2x3 parallel multiplications/sample, no internal buffers
 * - Time-scalable, allowing use with different samplerates
 * - Impulse and edge responses have continuous differential
 * - Requires high internal numerical precision
 */
{
 /* Parameters */
 // Number of samples from start of edge to halfway to new value
 const double scale = 100;
 // 0 < Smoothness < 1. High is better, but may cause precision problems
 const double smoothness = 0.999;

 /* Precalc variables */
 double a = 1.0-(2.4/scale); // Could also be set directly
 double b = smoothness; // -"-
 double acoef = a;
 double bcoef = a*b;
 double ccoef = a*b*b;
 double mastergain = 1.0 / (-1.0/(log(a)+2.0*log(b))+2.0/
 (log(a)+log(b))-1.0/log(a));
 double again = mastergain;
 double bgain = mastergain * (log(a*b*b)*(log(a)-log(a*b)) /
 ((log(a*b*b)-log(a*b))*log(a*b))
 - log(a)/log(a*b));
 double cgain = mastergain * (-(log(a)-log(a*b)) /
 (log(a*b*b)-log(a*b)));

 /* Runtime variables */
 long streamofs;
 double areg = 0;
 double breg = 0;
 double creg = 0;

 /* Main loop */
 for (streamofs = 0; streamofs < streamsize; streamofs++)
 {
 /* Update filters */
 areg = acoef * areg + fromstream [streamofs];
 breg = bcoef * breg + fromstream [streamofs];
 creg = ccoef * creg + fromstream [streamofs];

 /* Combine filters in parallel */
 long temp = again * areg
 + bgain * breg
 + cgain * creg;

 /* Check clipping */
 if (temp > 32767)
 {
 temp = 32767;
 }
 else if (temp < -32768)
 {
 temp = -32768;
 }

 /* Store new value */
 tostream [streamofs] = temp;
 }
}

Comments

	Date: 2007-01-06 04:19:27

	By: uh.etle.fni@yfoocs

Wouldn't just one pole with a low cutoff suit this purpose? At least that's what I usually do for smoothing parameter changes, and it works fine.

	Date: 2014-07-14 22:02:46

	By: moc.liamg@uttrep.imas

Works nicely, thanks. The gain calculations can be simplified quite a bit, to just one gain parameter.

gain = 1.0 / (-1.0 / log(a) + 2.0 / log(a * b) - 1.0 / log(a * b * b))

Then,

again = gain,
bgain = -2.0 * gain, and
cgain = gain.

MDCT and IMDCT based on FFTW3

	Author or source: moc.liamg@gnahz.auhuhs

	Type: analysis and synthesis filterbank

	Created: 2009-07-31 06:37:37

notes

MDCT/IMDCT is the most widely used filterbank in digital audio coding, e.g. MP3, AAC, WMA,
OGG Vorbis, ATRAC.

suppose input x and N=size(x,1)/2. the MDCT transform matrix is
 C=cos(pi/N*([0:2*N-1]'+.5+.5*N)*([0:N-1]+.5));
then MDCT spectrum for input x is
 y=C'*x;
A well known fast algorithm is based on FFT :
 (1) fold column-wisely the 2*N rows into N rows
 (2) complex arrange the N rows into N/2 rows
 (3) pre-twiddle, N/2-point complex fft, post-twiddle
 (4) reorder to form the MDCT spectrum
in fact, (2)-(4) is a fast DCT-IV algorithm.

Implementation of the algorithm can be found in faac, but a little bit mess to extract for
standalone use, and I ran into that problem. So I wrote some c codes to implement
MDCT/IMDCT for any length that is a multiple of 4. Hopefully they will be useful to people
here.

I benchmarked the codes using 3 FFT routines, FFT in faac, kiss_fft, and the awful FFTW.
MDCT based on FFTW is the fastest, 2048-point MDCT single precision 10^5 times in 1.54s,
about 50% of FFT in faac on my Petium IV 3G Hz.

An author of the FFTW, Steven G. Johnson, has a hard-coded fixed size MDCT of 256 input
samples(http://jdj.mit.edu/~stevenj/mdct_128nr.c). My code is 13% slower than his.

Using the codes is very simple:
 (1) init (declare first "extern void* mdctf_init(int)")
 void* m_plan = mdctf_init(N);
 (2) run mdct/imdct as many times as you wish
 mdctf(freq, time, m_plan);
 (3) free
 mdctf_free(m_plan);

Of course you need the the fftw library. On Linux, gcc options are "-O2 -lfftw3f -lm".
This is single precision.

Enjoy :)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

	/***
 MDCT/IMDCT of 4x length, Single Precision, based on FFTW
 shuhua dot zhang at gmail dot com
 Dept. of E.E., Tsinghua University
 ***/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <fftw3.h>

typedef struct {
 int N; // Number of time data points
 float* twiddle; // Twiddle factor
 fftwf_complex* fft_in; // fft workspace, input
 fftwf_complex* fft_out; // fft workspace, output
 fftwf_plan fft_plan; // fft configuration
} mdctf_plan;

mdctf_plan* mdctf_init(int N);
void mdctf_free(mdctf_plan* m_plan);
void mdctf(float* mdct_line, float* time_signal, mdctf_plan* m_plan);
void imdctf(float* time_signal, float* mdct_line, mdctf_plan* m_plan);

mdctf_plan* mdctf_init(int N)
{
 mdctf_plan* m_plan;
 double alpha, omiga, scale;
 int n;

 if(0x00 != (N & 0x03))
 {
 fprintf(stderr, " Expecting N a multiple of 4\n");
 return NULL;
 }

 m_plan = (mdctf_plan*) malloc(sizeof(mdctf_plan));

 m_plan->N = N;

 m_plan->twiddle = (float*) malloc(sizeof(float) * N >> 1);
 alpha = 2.f * M_PI / (8.f * N);
 omiga = 2.f * M_PI / N;
 scale = sqrt(sqrt(2.f / N));
 for(n = 0; n < (N >> 2); n++)
 {
 m_plan->twiddle[2*n+0] = (float) (scale * cos(omiga * n + alpha));
 m_plan->twiddle[2*n+1] = (float) (scale * sin(omiga * n + alpha));
 }

 m_plan->fft_in = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * N >> 2);
 m_plan->fft_out = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * N >> 2);
 m_plan->fft_plan = fftwf_plan_dft_1d(N >> 2,
 m_plan->fft_in,
 m_plan->fft_out,
 FFTW_FORWARD,
 FFTW_MEASURE);

 return m_plan;

}

void mdctf_free(mdctf_plan* m_plan)
{
 fftwf_destroy_plan(m_plan->fft_plan);
 fftwf_free(m_plan->fft_in);
 fftwf_free(m_plan->fft_out);
 free(m_plan->twiddle);
 free(m_plan);
}

void mdctf(float* mdct_line, float* time_signal, mdctf_plan* m_plan)
{
 float *xr, *xi, r0, i0;
 float *cos_tw, *sin_tw, c, s;
 int N4, N2, N34, N54, n;

 N4 = (m_plan->N) >> 2;
 N2 = 2 * N4;
 N34 = 3 * N4;
 N54 = 5 * N4;

 cos_tw = m_plan->twiddle;
 sin_tw = cos_tw + 1;

 /* odd/even folding and pre-twiddle */
 xr = (float*) m_plan->fft_in;
 xi = xr + 1;
 for(n = 0; n < N4; n += 2)
 {
 r0 = time_signal[N34-1-n] + time_signal[N34+n];
 i0 = time_signal[N4+n] - time_signal[N4-1-n];

 c = cos_tw[n];
 s = sin_tw[n];

 xr[n] = r0 * c + i0 * s;
 xi[n] = i0 * c - r0 * s;
 }

 for(; n < N2; n += 2)
 {
 r0 = time_signal[N34-1-n] - time_signal[-N4+n];
 i0 = time_signal[N4+n] + time_signal[N54-1-n];

 c = cos_tw[n];
 s = sin_tw[n];

 xr[n] = r0 * c + i0 * s;
 xi[n] = i0 * c - r0 * s;
 }

 /* complex FFT of N/4 long */
 fftwf_execute(m_plan->fft_plan);

 /* post-twiddle */
 xr = (float*) m_plan->fft_out;
 xi = xr + 1;
 for(n = 0; n < N2; n += 2)
 {
 r0 = xr[n];
 i0 = xi[n];

 c = cos_tw[n];
 s = sin_tw[n];

 mdct_line[n] = - r0 * c - i0 * s;
 mdct_line[N2-1-n] = - r0 * s + i0 * c;
 }
}

void imdctf(float* time_signal, float* mdct_line, mdctf_plan* m_plan)
{
 float *xr, *xi, r0, i0, r1, i1;
 float *cos_tw, *sin_tw, c, s;
 int N4, N2, N34, N54, n;

 N4 = (m_plan->N) >> 2;
 N2 = 2 * N4;
 N34 = 3 * N4;
 N54 = 5 * N4;

 cos_tw = m_plan->twiddle;
 sin_tw = cos_tw + 1;

 /* pre-twiddle */
 xr = (float*) m_plan->fft_in;
 xi = xr + 1;
 for(n = 0; n < N2; n += 2)
 {
 r0 = mdct_line[n];
 i0 = mdct_line[N2-1-n];

 c = cos_tw[n];
 s = sin_tw[n];

 xr[n] = -2.f * (i0 * s + r0 * c);
 xi[n] = -2.f * (i0 * c - r0 * s);
 }

 /* complex FFT of N/4 long */
 fftwf_execute(m_plan->fft_plan);

 /* odd/even expanding and post-twiddle */
 xr = (float*) m_plan->fft_out;
 xi = xr + 1;
 for(n = 0; n < N4; n += 2)
 {
 r0 = xr[n];
 i0 = xi[n];

 c = cos_tw[n];
 s = sin_tw[n];

 r1 = r0 * c + i0 * s;
 i1 = r0 * s - i0 * c;

 time_signal[N34-1-n] = r1;
 time_signal[N34+n] = r1;
 time_signal[N4+n] = i1;
 time_signal[N4-1-n] = -i1;
 }

 for(; n < N2; n += 2)
 {
 r0 = xr[n];
 i0 = xi[n];

 c = cos_tw[n];
 s = sin_tw[n];

 r1 = r0 * c + i0 * s;
 i1 = r0 * s - i0 * c;

 time_signal[N34-1-n] = r1;
 time_signal[-N4+n] = -r1;
 time_signal[N4+n] = i1;
 time_signal[N54-1-n] = i1;
 }
}

Comments

	Date: 2009-08-05 14:42:44

	By: none

Hi, your "freq, time" example in your comments feed into the main function as "mdct_line, time_signal" float pointers.
Can you explain what these are?
Thanks
D

	Date: 2009-08-11 05:11:59

	By: moc.liamg@gnahz.auhuhs

Hi,

 Here I past a complete test bench for the MDCT/IMDCT routine. Suppose the MDCT/IMDCT routines named "mdctf.c" and the following benchmark routine named "ftestbench.c", the gcc compilation command will be
 gcc -o ftestbench -O2 ftestbench.c mdctf.c -lfftw3f -lm

Shuhua Zhang, Aug. 11, 2009

/* benchmark MDCT and IMDCT, floating point */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

extern void* mdctf_init(int);

int main(int argc, char* argv[])
{
 int N, r, i;
 float* time;
 float* freq;
 void* m_plan;
 clock_t t0, t1;

 if(3 != argc)
 {
 fprintf(stderr, " Usage: %s <MDCT_SIZE> <run_times> \n", argv[0]);
 return -1;
 }

 sscanf(argv[1], "%d", &N);
 sscanf(argv[2], "%d", &r);

 time = (float*)malloc(sizeof(float) * N);
 freq = (float*)malloc(sizeof(float) * (N >> 1));
 for(i = 0; i < N; i++)
 time[i] = 2.f * rand() / RAND_MAX - 1.f;

 /* MDCT/IMDCT floating point initialization */
 m_plan = mdctf_init(N);
 if(NULL == m_plan)
 {
 free(freq);
 free(time);
 return -1;
 }

 /* benchmark MDCT floating point*/
 t0 = clock();
 for(i = 0; i < r; i++)
 mdctf(freq, time, m_plan);
 t1 = clock();
 fprintf(stdout, "MDCT of size %d, float, running %d times, uses %.2e s\n",
 N, r, (float) (t1 - t0) / CLOCKS_PER_SEC);

 /* benchmark IMDCT floating point*/
 t0 = clock();
 for(i = 0; i < r; i++)
 imdctf(time, freq, m_plan);
 t1 = clock();
 fprintf(stdout, "IMDCT of size %d, float, running %d times, uses %.2e s\n",
 N, r, (float) (t1 - t0) / CLOCKS_PER_SEC);

 /* free MDCT/IMDCT workspace */
 mdctf_free(m_plan);

 free(freq);
 free(time);

 return 0;

}

Moog Filter

	Author or source: ed.luosfosruoivas@naitsirhC

	Type: Antti’s version (nonlinearities)

	Created: 2005-04-27 08:54:50

notes

Here is a Delphi/Object Pascal translation of Antti's Moog Filter.

Antti wrote:

"At last DAFX I published a paper presenting a non-linear model of the Moog ladder. For
that, see http://dafx04.na.infn.it/WebProc/Proc/P_061.pdf

I used quite different approach in that one. A half-sample delay ([0.5 0.5] FIR filter
basically) is inserted in the feedback loop. The remaining tuning and resonance error are
corrected with polynomials. This approach depends on using at least 2X oversampling - the
response after nyquist/2 is abysmal but that's taken care of by the oversampling.

Victor Lazzarini has implemented my model in CSound:
http://www.csounds.com/udo/displayOpcode.php?opcode_id=32

In summary: You can use various methods, but you will need some numerically derived
correction to realize exact tuning and resonance control. If you can afford 2X
oversampling, use Victor's CSound code - the tuning has been tested to be very close
ideal.

Ps. Remember to use real oversampling instead of the "double sampling" the CSound code
uses."

I did not implemented real oversampling, but i inserted additional noise, which simulates
the resistance noise and also avoids denormal problems...

code

	1

	http://www.savioursofsoul.de/Christian/MoogFilter.pas

Comments

	Date: 2005-04-27 18:08:06

	By: ed.luosfosruoivas@naitsirhC

You can also listen to it (Windows-VST) here: http://www.savioursofsoul.de/Christian/VST/MoogVST.zip

	Date: 2005-05-06 21:57:17

	By: rlindner@gmx ..dot.. net

and here is the same thing written in C. It was written while translating the CSound Code into code for the synthmaker code module as an intermediate step to enable debugging thru gdb. The code was written to be easy adoptable for the synthmaker code module (funny defines, static vars, single sample tick function,...) Has some room for improvements, but nothing fancy for seasoned C programmers.

#include <memory.h>
#include <stdio.h>
#include <math.h>

#define polyin float
#define polyout float

#define BUFSIZE 64

float delta_func [BUFSIZE];
float out_buffer [BUFSIZE];

void tick (float in, float cf, float reso, float *out) {

// start of sm code

// filter based on the text "Non linear digital implementation of the moog ladder filter" by Antti Houvilainen
// adopted from Csound code at http://www.kunstmusik.com/udo/cache/moogladder.udo
polyin input;
polyin cutoff;
polyin resonance;

polyout sigout;

// remove this line in sm
input = in; cutoff = cf; resonance = reso;

// resonance [0..1]
// cutoff from 0 (0Hz) to 1 (nyquist)

float pi; pi = 3.1415926535;
float v2; v2 = 40000; // twice the 'thermal voltage of a transistor'
float sr; sr = 22100;

float cutoff_hz;
cutoff_hz = cutoff * sr;

static float az1;
static float az2;
static float az3;
static float az4;
static float az5;
static float ay1;
static float ay2;
static float ay3;
static float ay4;
static float amf;

float x; // temp var: input for taylor approximations
float xabs;
float exp_out;
float tanh1_out, tanh2_out;
float kfc;
float kf;
float kfcr;
float kacr;
float k2vg;

kfc = cutoff_hz/sr; // sr is half the actual filter sampling rate
kf = cutoff_hz/(sr*2);
// frequency & amplitude correction
kfcr = 1.8730*(kfc*kfc*kfc) + 0.4955*(kfc*kfc) - 0.6490*kfc + 0.9988;
kacr = -3.9364*(kfc*kfc) + 1.8409*kfc + 0.9968;

x = -2.0 * pi * kfcr * kf;
exp_out = expf(x);

k2vg = v2*(1-exp_out); // filter tuning

// cascade of 4 1st order sections
float x1 = (input - 4*resonance*amf*kacr) / v2;
float tanh1 = tanhf (x1);
float x2 = az1/v2;
float tanh2 = tanhf (x2);
ay1 = az1 + k2vg * (tanh1 - tanh2);

// ay1 = az1 + k2vg * (tanh((input - 4*resonance*amf*kacr) / v2) - tanh(az1/v2));
az1 = ay1;

ay2 = az2 + k2vg * (tanh(ay1/v2) - tanh(az2/v2));
az2 = ay2;

ay3 = az3 + k2vg * (tanh(ay2/v2) - tanh(az3/v2));
az3 = ay3;

ay4 = az4 + k2vg * (tanh(ay3/v2) - tanh(az4/v2));
az4 = ay4;

// 1/2-sample delay for phase compensation
amf = (ay4+az5)*0.5;
az5 = ay4;

// oversampling (repeat same block)
ay1 = az1 + k2vg * (tanh((input - 4*resonance*amf*kacr) / v2) - tanh(az1/v2));
az1 = ay1;

ay2 = az2 + k2vg * (tanh(ay1/v2) - tanh(az2/v2));
az2 = ay2;

ay3 = az3 + k2vg * (tanh(ay2/v2) - tanh(az3/v2));
az3 = ay3;

ay4 = az4 + k2vg * (tanh(ay3/v2) - tanh(az4/v2));
az4 = ay4;

// 1/2-sample delay for phase compensation
amf = (ay4+az5)*0.5;
az5 = ay4;

sigout = amf;

// end of sm code

*out = sigout;

} // tick

int main (int argc, char *argv[]) {

 // set delta function
 memset (delta_func, 0, sizeof(delta_func));
 delta_func[0] = 1.0;

 int i = 0;
 for (i = 0; i < BUFSIZE; i++) {
 tick (delta_func[i], 0.6, 0.7, out_buffer+i);
 }
 for (i = 0; i < BUFSIZE; i++) {
 printf ("%f;", out_buffer[i]);
 }
 printf ("\n");

} // main

	Date: 2005-05-07 03:56:13

	By: eb.tenyks@didid

I think that a better speed optimization of Tanh2 would be to extract the sign bit (using integer) instead of abs, and add it back to the final result, to avoid FABS, FCOMP and the branching

	Date: 2005-05-08 19:03:40

	By: ed.luosfosruoivas@naitsirhC

After reading some more assembler documents for university, i had the same idea...
Now: Coding!

	Date: 2005-05-08 22:42:55

	By: eb.tenyks@didid

Btw1, is the idea to get rid of the "*0.5" in the "1/2 sample delay" block by using *2 instead of *4 in the first filter?

Btw2, following the same simplification, you can also precompute "-2*fQ*fAcr" outside.

	Date: 2005-05-09 01:49:49

	By: eb.tenyks@didid

Forget the sign bit thing, actually your Tanh could already have been much faster at the source:

 a:=f_abs(x);
 a:=a*(6+a*(3+a));
 if (x<0)
 then Result:=-a/(a+12)
 else Result:= a/(a+12);

can be written as the much simpler:

Result:=x*(6+Abs(x)*(3+Abs(x))/(Abs(x)+12)

..so in asm:

function Tanh2(x:Single):Single;
const c3 :Single=3;
 c6 :Single=6;
 c12:Single=12;
Asm
 FLD x
 FLD ST(0)
 FABS
 FLD c3
 FADD ST(0),ST(1)
 FMUL ST(0),ST(1)
 FADD c6
 FMUL ST(0),ST(2)
 FXCH ST(1)
 FADD c12
 FDIVP ST(1),ST(0)
 FSTP ST(1)
End;

..but it won't be much faster than your code, because:
-of the slow FDIV
-it's still a function call. Since our dumb Delphi doesn't support assembler macro's, you waste a lot in the function call. You can still try to inline a plain pascal code, but since our dumb Delphi isn't good at compiling float code neither..

Solutions:
-a lookup table for the TanH
-you write the filter processing in asm as well, and you put the TanH code in a separate file (without the header, and assuming in & out are ST(0)). You then $I to insert that file when the function call is needed. Poorman's macro's in Delphi :)

Still, that's a lot of FDIV for a filter..

	Date: 2005-05-09 03:24:44

	By: eb.tenyks@didid

forget it, I was all wrong :)
gonna re-post a working version later

still I think that most of the CPU will always be wasted by the division.

	Date: 2005-05-09 03:48:33

	By: eb.tenyks@didid

Ignore the above, here it is working (for this code, assuming a premultiplied x):

function Tanh2(x:Single):Single;
const c3 :Single=3;
 c6 :Single=6;
 c12 :Single=12;
Asm
 FLD x
 FLD ST(0)
 FABS // a
 FLD c3
 FADD ST(0),ST(1)
 FMUL ST(0),ST(1)
 FADD c6 // b
 FMUL ST(2),ST(0) // x*b
 FMULP ST(1),ST(0) // a*b
 FADD c12
 FDIVP ST(1),ST(0)
End;

	Date: 2005-05-09 07:59:40

	By: ed.luosfosruoivas@naitsirhC

That code is nice and very fast! But it's not that accurate. But indeed very fast! Thanks for the code. My approach was a lot slower.

	Date: 2005-05-09 15:05:28

	By: eb.tenyks@didid

But it should be as accurate as the one in your pascal code: it's the same approximation as Tanh2_pas2. Of course we're still talking about a Tanh approximation. You can still take it up to /24 for cheap.
Of course, don't try the first one I posted, it's completely wrong.

Btw it's also more accurate than pascal code, since it keeps values in the 80bit FPU registers, while the Delphi compiler will put them back to the 32bit variables in-between.

Btw2 I implemented the {$I macro.inc} trick, works pretty well. The whole thing speeded up the code by almost 2. For more you could 3DNow 2 Tanh at once, it'd be easy in that filter.

	Date: 2005-05-09 21:20:06

	By: ed.luosfosruoivas@naitsirhC

OK, it's indeed my tanh2_pas2 approximation, but i've plotted both functions once and i found out, that the /24 version is much more accurate and that it is worth to calculate the additional macc operation.

But of course the assembler version is much more accurate indeed.

After assembler optimization, i could only speedup the whole thing to a factor of 1.5 the speed (measured with an impulse) and up to a factor of 1.7 measured with noise and the initial version with the branch.

I will now do the 3DNow/SSE optimisation, let's see how it can be speeded up further more...

	Date: 2005-05-11 04:19:47

	By: eb.tenyks@didid

something bugs me about this filter.. I was assuming that it was made for a standard -1..1 normalized input. But looking at the 1/40000 drive gain, isn't it made for a -32768..32767 input? Otherwise I don't see what the Tanh drive is doing, it's basically linear for such low values, and I can't hear any difference with or without it.

	Date: 2005-05-11 11:00:39

	By: ed.luosfosruoivas@naitsirhC

Usually the tanh component wasn't a desired feature in the analog filter design. They trie to keep the input of a differential amplifier very low to retain the linearity.
I have uploaded some plots from my VST Plugin Analyser Pro:
http://www.savioursofsoul.de/Christian/VST/filter4.png (with -1..+1)
http://www.savioursofsoul.de/Christian/VST/filter5.png (with -32768..+32767)

http://www.savioursofsoul.de/Christian/VST/
filter1.png (other...)
http://www.savioursofsoul.de/Christian/VST/filter2.png (other...)
http://www.savioursofsoul.de/Christian/VST/filter3.png (other...)

Additionally i have updated the VST with a new slider for a gain multiplication (http://www.savioursofsoul.de/Christian/VST/MoogVST.zip)

	Date: 2005-11-28 10:09:19

	By: moc.liamg@dwod_niatnif

There is an error in the C implementation above,
sr = 44100Hz, half the rate of the filter which is oversampled at a rate of 88200Hz. So the 22100 needs to be changed.
Christians MoogFilter.pas implements it correctly.

Moog VCF

	Author or source: CSound source code, Stilson/Smith CCRMA paper.

	Type: 24db resonant lowpass

	Created: 2002-01-17 02:02:40

notes

Digital approximation of Moog VCF. Fairly easy to calculate coefficients, fairly easy to
process algorithm, good sound.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	//Init
cutoff = cutoff freq in Hz
fs = sampling frequency //(e.g. 44100Hz)
res = resonance [0 - 1] //(minimum - maximum)

f = 2 * cutoff / fs; //[0 - 1]
k = 3.6*f - 1.6*f*f -1; //(Empirical tunning)
p = (k+1)*0.5;
scale = e^((1-p)*1.386249;
r = res*scale;
y4 = output;

y1=y2=y3=y4=oldx=oldy1=oldy2=oldy3=0;

//Loop
//--Inverted feed back for corner peaking
x = input - r*y4;

//Four cascaded onepole filters (bilinear transform)
y1=x*p + oldx*p - k*y1;
y2=y1*p+oldy1*p - k*y2;
y3=y2*p+oldy2*p - k*y3;
y4=y3*p+oldy3*p - k*y4;

//Clipper band limited sigmoid
y4 = y4 - (y4^3)/6;

oldx = x;
oldy1 = y1;
oldy2 = y2;
oldy3 = y3;

Comments

	Date: 2004-10-14 10:18:59

	By: ed.xmg@resiaknegah

I guess the input is supposed to be between -1..1

	Date: 2007-02-05 00:30:04

	By: moc.erehwon@ydobon

Still working on this one. Anyone notice it's got a few syntax problems? Makes me wonder if it's even been tried.

Missing parenthesis. Uses ^ twice. If I get it to work, I'll post usable code.

	Date: 2007-02-05 17:21:53

	By: moc.erehwon@tsaot

 OK. Can't guarantee this is a 100% translation to real C++, but it does work. Aside from possible mistakes, I mucked hard with the coefficient translation, so that there is a slight difference in the numbers.

1. What kind of filter ends up with exp() in the coefficient calculation instead of the usual sin(), cos(), tan() transcendentals? If someone can explain where the e to the x comes from, I'd appreciate it.

2. Since I didn't understand the origin of the coefficients, I saw the whole section as an excercise in algebra. There were some superfluous multiplications and additions.

First I implemented the e to the x with pow(). That was stupid. I switched to exp(). Hated that too. Checked out the range of inputs and decided on a common approximation for exp().

I think it's now one of the fastest filter coefficient calcs you'll see for a 4 pole. Go ahead--put the cutoff on an envelope and the q on an LFO. Hell, FM the Q if you want!

A pretty good filter. Watch the res (aka Q). Above 9, squeals like a pig. Not in a good way.

Needs more work, i think, to stand up with the better LPs in the real VST world. But an awfully cool starting place.

If I did something awful here in the translation, or if you have a question about how to use it, best to ask me (mistertoast) over at KvRaudio.com in the dev section.

I'm toying with the idea of wedging this into TobyBear's filter designer as a flt file. If you manage first, let me know. I'm mistertoast.

	Date: 2007-02-05 17:22:24

	By: moc.erehwon@tsaot

MoogFilter.h:

class MoogFilter
{
public:
MoogFilter();
void init();
void calc();
float process(float x);
~MoogFilter();
float getCutoff();
void setCutoff(float c);
float getRes();
void setRes(float r);
protected:
float cutoff;
float res;
float fs;
float y1,y2,y3,y4;
float oldx;
float oldy1,oldy2,oldy3;
float x;
float r;
float p;
float k;
};

	Date: 2007-02-05 17:22:43

	By: moc.erehwon@tsaot

MoogFilter.cpp:

#include "MoogFilter.h"

MoogFilter::MoogFilter()
{
fs=44100.0;

init();
}

MoogFilter::~MoogFilter()
{
}

void MoogFilter::init()
{
// initialize values
y1=y2=y3=y4=oldx=oldy1=oldy2=oldy3=0;
calc();
};

void MoogFilter::calc()
{
float f = (cutoff+cutoff) / fs; //[0 - 1]
p=f*(1.8f-0.8f*f);
k=p+p-1.f;

float t=(1.f-p)*1.386249f;
float t2=12.f+t*t;
r = res*(t2+6.f*t)/(t2-6.f*t);
};

float MoogFilter::process(float input)
{
// process input
x = input - r*y4;

//Four cascaded onepole filters (bilinear transform)
y1= x*p + oldx*p - k*y1;
y2=y1*p + oldy1*p - k*y2;
y3=y2*p + oldy2*p - k*y3;
y4=y3*p + oldy3*p - k*y4;

//Clipper band limited sigmoid
y4-=(y4*y4*y4)/6.f;

oldx = x; oldy1 = y1; oldy2 = y2; oldy3 = y3;
return y4;
}

float MoogFilter::getCutoff()
{ return cutoff; }

void MoogFilter::setCutoff(float c)
{ cutoff=c; calc(); }

float MoogFilter::getRes()
{ return res; }

void MoogFilter::setRes(float r)
{ res=r; calc(); }

	Date: 2007-02-05 22:04:51

	By: moc.dniftnacuoyerehwemos@tsaot

I see where the exp() comes from. It just models the resonance. I think it needs more work. At high frequencies it goes into self-oscillation much more quickly than at low frequencies.

	Date: 2012-01-31 12:29:16

	By: moc.llun@ved

A much better tuning seems to be
k=2*sin(f*pi/2)-1;

(within a 0.1 cent up to 4kHz, at 44.1kHz sample rate)

	Date: 2014-03-26 21:16:08

	By: ten.eroctsid@alub

This filter works and sounds fine in my VST.
I've re-written the code using templates, which makes life easier when switching between <float> and <double> implementation.

#pragma once

namespace DistoCore
{
 template<class T>
 class MoogFilter
 {
 public:
 MoogFilter();
 ~MoogFilter() {};

 T getSampleRate() const { return sampleRate; }
 void setSampleRate(T fs) { sampleRate = fs; calc(); }
 T getResonance() const { return resonance; }
 void setResonance(T filterRezo) { resonance = filterRezo; calc(); }
 T getCutoff() const { return cutoff; }
 T getCutoffHz() const { return cutoff * sampleRate * 0.5; }
 void setCutoff(T filterCutoff) { cutoff = filterCutoff; calc(); }

 void init();
 void calc();
 T process(T input);
 // filter an input sample using normalized params
 T filter(T input, T cutoff, T resonance);

 protected:
 // cutoff and resonance [0 - 1]
 T cutoff;
 T resonance;
 T sampleRate;
 T fs;
 T y1,y2,y3,y4;
 T oldx;
 T oldy1,oldy2,oldy3;
 T x;
 T r;
 T p;
 T k;
 };

 /**
 * Construct Moog-filter.
 */
 template<class T>
 MoogFilter<T>::MoogFilter()
 : sampleRate(T(44100.0))
 , cutoff(T(1.0))
 , resonance(T(0.0))
 {
 init();
 }

 /**
 * Initialize filter buffers.
 */
 template<class T>
 void MoogFilter<T>::init()
 {
 // initialize values
 y1=y2=y3=y4=oldx=oldy1=oldy2=oldy3=T(0.0);
 calc();
 }

 /**
 * Calculate coefficients.
 */
 template<class T>
 void MoogFilter<T>::calc()
 {
 // TODO: replace with your constant
 const double kPi = 3.1415926535897931;

 // empirical tuning
 p = cutoff * (T(1.8) - T(0.8) * cutoff);
 // k = p + p - T(1.0);
 // A much better tuning seems to be:
 k = T(2.0) * sin(cutoff * kPi * T(0.5)) - T(1.0);

 T t1 = (T(1.0) - p) * T(1.386249);
 T t2 = T(12.0) + t1 * t1;
 r = resonance * (t2 + T(6.0) * t1) / (t2 - T(6.0) * t1);
 };

 /**
 * Process single sample.
 */
 template<class T>
 T MoogFilter<T>::process(T input)
 {
 // process input
 x = input - r * y4;

 // four cascaded one-pole filters (bilinear transform)
 y1 = x * p + oldx * p - k * y1;
 y2 = y1 * p + oldy1 * p - k * y2;
 y3 = y2 * p + oldy2 * p - k * y3;
 y4 = y3 * p + oldy3 * p - k * y4;

 // clipper band limited sigmoid
 y4 -= (y4 * y4 * y4) / T(6.0);

 oldx = x; oldy1 = y1; oldy2 = y2; oldy3 = y3;

 return y4;
 }

 /**
 * Filter single sample using specified params.
 */
 template<class T>
 T MoogFilter<T>::filter(T input, T filterCutoff, T filterRezo)
 {
 // set params first
 cutoff = filterCutoff;
 resonance = filterRezo;
 calc();

 return process(input);
 }
}

	Date: 2014-05-27 19:30:12

	By: ten.enignepot@derf

Why samplerate is missing in calc function?

	Date: 2015-11-12 08:14:23

	By: moc.liamg@neslintreborkram

This code works great. I already had a filter in my program so sticking this in only took about an hour. The sound is just what I hoped it would be. I started putting some really gnarly low frequency square waves through it and it returns that super chewy sound you can get from a Moog. Thanks for this.

	Date: 2016-06-23 02:27:27

	By: moc.poon@poon

This filter works just fine and sweeps just fine almost all the way down, cutoff easily goes below 40 Hz without issue. I implemented it in Numerical Python (Jupyter notebook) just to be able to see it working and fiddle with it (renders sound to .wav in non realtime of course).

Cutoff sweep sounds good enough, a bit on the clean side compared to the analog Moog filters I've heard. It starts to ring around res=0.7 and self oscillates fine for almost any res above 1.0. I find this filter's ringing sounds a bit tinny, thin and rather irritating though. This seems to be a common problem in DSP filters. It needs something, a je ne sais quoi of some kind.

Any suggestions how to modify it?

Moog VCF, variation 1

	Author or source: CSound source code, Stilson/Smith CCRMA paper., Paul Kellett version

	Type: 24db resonant lowpass

	Created: 2002-01-17 02:03:52

notes

The second "q =" line previously used exp() - I'm not sure if what I've done is any
faster, but this line needs playing with anyway as it controls which frequencies will
self-oscillate. I
think it could be tweaked to sound better than it currently does.

Highpass / Bandpass :

They are only 6dB/oct, but still seem musically useful - the 'fruity' sound of the
24dB/oct lowpass is retained.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	// Moog 24 dB/oct resonant lowpass VCF
// References: CSound source code, Stilson/Smith CCRMA paper.
// Modified by paul.kellett@maxim.abel.co.uk July 2000

 float f, p, q; //filter coefficients
 float b0, b1, b2, b3, b4; //filter buffers (beware denormals!)
 float t1, t2; //temporary buffers

// Set coefficients given frequency & resonance [0.0...1.0]

 q = 1.0f - frequency;
 p = frequency + 0.8f * frequency * q;
 f = p + p - 1.0f;
 q = resonance * (1.0f + 0.5f * q * (1.0f - q + 5.6f * q * q));

// Filter (in [-1.0...+1.0])

 in -= q * b4; //feedback
 t1 = b1; b1 = (in + b0) * p - b1 * f;
 t2 = b2; b2 = (b1 + t1) * p - b2 * f;
 t1 = b3; b3 = (b2 + t2) * p - b3 * f;
 b4 = (b3 + t1) * p - b4 * f;
 b4 = b4 - b4 * b4 * b4 * 0.166667f; //clipping
 b0 = in;

// Lowpass output: b4
// Highpass output: in - b4;
// Bandpass output: 3.0f * (b3 - b4);

Comments

	Date: 2005-01-06 00:57:41

	By: ten.xmg@42nitram.leinad

I just tried the filter code and it seems like the highpass output is the same as the lowpass output, or at least another lowpass...

But i´m still testing the filter code...

	Date: 2005-01-06 01:30:37

	By: ten.xmg@42nitram.leinad

Sorry for the Confusion, it works....
I just had a typo in my code.

One thing i did to get the HP sound nicer was

HP output: (in - 3.0f * (b3 - b4))-b4

But I´m a newbie to DSP Filters...

	Date: 2005-08-19 00:17:24

	By: ten.epacsten@0002skcuswodniw

Hey, thanks for this code. I'm a bit confused as to the range to the frequency and resonance. Is it really 0.0-1.0? If so, how so I specify a certain frequency, such as... 400Hz? THANKS!

	Date: 2005-08-20 13:28:54

	By: ed.luosfosruoivas@naitsirhC

frequency * nyquist
or
frequency * samplerate

don't know the exact implementation.

	Date: 2007-02-05 18:28:48

	By: moc.erehwon@ydobon

>>Hey, thanks for this code. I'm a bit confused as to the range to the frequency and resonance. Is it really 0.0-1.0? If so, how so I specify a certain frequency, such as... 400Hz? THANKS!

I'd guess it would be:

frequency/(samplerate/2.f)

	Date: 2009-10-23 19:05:04

	By: moc.erehwon@yugsiht

The domain seems to be 0-nyquest (samplerate/2.0), but the range is 0-1

A better way to get smoother non-linear mapping of frequency would be this:
(give you a range of 20Hz to 20kHz)

freqinhz = 20.f * 1000.f ^ range;

then

frequency = freqinhz * (1.f/(samplerate/2.0f));

	Date: 2012-02-24 13:45:09

	By: ed.redienhcsslin@psdcisum

I like the sound of this one, unfortunately, it breaks quite fast, causing the internal values b1-b4 to be "infinity". Any hints?

Moog VCF, variation 2

	Author or source: CSound source code, Stilson/Smith CCRMA paper., Timo Tossavainen (?) version

	Type: 24db resonant lowpass

	Created: 2002-01-17 02:04:57

notes

in[x] and out[x] are member variables, init to 0.0 the controls:

fc = cutoff, nearly linear [0,1] -> [0, fs/2]
res = resonance [0, 4] -> [no resonance, self-oscillation]

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	Tdouble MoogVCF::run(double input, double fc, double res)
{
 double f = fc * 1.16;
 double fb = res * (1.0 - 0.15 * f * f);
 input -= out4 * fb;
 input *= 0.35013 * (f*f)*(f*f);
 out1 = input + 0.3 * in1 + (1 - f) * out1; // Pole 1
 in1 = input;
 out2 = out1 + 0.3 * in2 + (1 - f) * out2; // Pole 2
 in2 = out1;
 out3 = out2 + 0.3 * in3 + (1 - f) * out3; // Pole 3
 in3 = out2;
 out4 = out3 + 0.3 * in4 + (1 - f) * out4; // Pole 4
 in4 = out3;
 return out4;
}

Comments

	Date: 2003-03-29 21:50:47

	By: rf.oohay@elahwyksa

This one works pretty well, thanks !

	Date: 2003-11-08 06:14:19

	By: moc.liamtoh@serpudr

could somebody explain, what means this

input -= out4 * fb;
input *= 0.35013 * (f*f)*(f*f);

is "input-" and "input *" the name of an variable ??
or is this an Csound specific parameter ??
I want to translate this piece to Assemblercode
Robert Dupres

	Date: 2003-11-11 11:05:42

	By: ten.bjc.fieltednabpop@cnahoj

input is name of a variable with type double.

input -= out4 * fb;

is just a shorter way for writing:

input = input - out4 * fb;

and the *= operator is works similar:

input *= 0.35013 * (f*f)*(f*f);

is equal to

input = input * 0.35013 * (f*f)*(f*f);

/ Johan

	Date: 2004-07-12 22:11:20

	By: ude.drofnats.amrcc@lfd

I've found this filter is unstable at low frequencies, namely when changing quickly from high to low frequencies...

	Date: 2004-07-17 13:39:23

	By: moc.kisuw@kmailliw

I'm trying to double-sample this filter, like the Variable-State one. But so far no success, any tips?

Wk

	Date: 2004-08-25 08:51:08

	By: ten.enegatum@liam

What do you mean no success? What happens? Have you tried doing the usual oversampling tricks (sinc/hermite/mix-with-zeros-and-filter), call the moogVCF twice (with fc = fc*0.5) and then filter and decimate afterwards?

I'm been trying to find a good waveshaper to put in the feedback path but haven't found a good sounding stable one yet. I had one version of the filter that tracked the envelope of out4 and used it to control the degree to which values below some threshold (say 0.08) would get squashed towards zero. That sounded ok (actually quite good for very high inputs), but wasn't entirely stable and was glitching for low frequencies. Then I tried a *out4 = (1+d)* (*out4)/(1 + d* (*out4)) waveshaper, but that just aliased horribly and made the filter sound mushy and noisy.

Plain old polynomial (x = x-x*x*x) saturation sounds dull. There must be something better out there, though... and I'd much prefer not to have to oversample to get it, though I guess that might be unavoidable.

	Date: 2006-01-30 15:52:54

	By: moc.liamg@fIezees

Excuse me but just a basic question from a young
developper
in line " input -= out4 * fb; "
i don't understand when and how "out4" is initialised
is it the "out4" return by the previous execution?
which initialisation for the first execution?

	Date: 2006-01-31 17:15:24

	By: musicdsp@[remove this]dsparsons.co.uk

all the outs should be initialised to zero, so first time around, nothing is subtracted. However, thereafter, the previous output is multiplied and subtracted from the input.

HTH

	Date: 2009-11-10 16:02:55

	By: moc.liamg@gulcidrab

YAND (Yet Another Newbie Developer) here -

This filter sounds good, and with the addition of a 2nd harmonic waveshaper in the feedback loop, it sounds VERY good.

I was hoping I could make it into a HP filter through the normal return in-out4 - but that strategy doesn't work for this method. I'm afraid I'm at a loss as to what to try next - anyone have a suggestion?

--Coz

	Date: 2010-01-08 19:32:16

	By: http://www.myspace.com/paradoxuncreated

You have to subract each filter, from the input in the cascade.

Check also the Karlsen filters, which I made a few years ago, when going through this stage in DSP.

	Date: 2012-03-02 12:05:25

	By: moc.llun@ved

The best sounding LP i've found here. Any suggestions how to extract HP/BP?

in - out4 doesn't work, as stated above, but "You have to subtract each filter, fron the input in the cascade", what does this mean?

in - out4 - out3 - out2 - out1 doesn't work either

Notch filter

	Author or source: Olli Niemitalo

	Type: 2 poles 2 zeros IIR

	Created: 2002-01-17 02:11:07

notes

Creates a muted spot in the spectrum with adjustable steepness. A complex conjugate pair
of zeros on the z- plane unit circle and neutralizing poles approaching at the same angles
from inside the unit circle.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	Parameters:
0 =< freq =< samplerate/2
0 =< q < 1 (The higher, the narrower)

AlgoAlgo=double pi = 3.141592654;
double sqrt2 = sqrt(2.0);

double freq = 2050; // Change! (zero & pole angle)
double q = 0.4; // Change! (pole magnitude)

double z1x = cos(2*pi*freq/samplerate);
double a0a2 = (1-q)*(1-q)/(2*(fabs(z1x)+1)) + q;
double a1 = -2*z1x*a0a2;
double b1 = -2*z1x*q;
double b2 = q*q;
double reg0, reg1, reg2;

unsigned int streamofs;
reg1 = 0;
reg2 = 0;

/* Main loop */
for (streamofs = 0; streamofs < streamsize; streamofs++)
{
 reg0 = a0a2 * ((double)fromstream[streamofs]
 + fromstream[streamofs+2])
 + a1 * fromstream[streamofs+1]
 - b1 * reg1
 - b2 * reg2;

 reg2 = reg1;
 reg1 = reg0;

 int temp = reg0;

 /* Check clipping */
 if (temp > 32767) {
 temp = 32767;
 } else if (temp < -32768) temp = -32768;

 /* Store new value */
 tostream[streamofs] = temp;
}

Comments

	Date: 2006-09-27 09:53:49

	By: moc.liamtoh@18recnuor

i tried implementing it, failed,
and its wierd how it looks further in time
instead of backwards, you cant use it in
a running rendered stream cause the end of
it stuffs up....

	Date: 2006-09-27 11:43:49

	By: musicdsp@Nospam dsparsons.co.uk

I think it's a type, and should be
=-=-=
reg0 = a0a2 * ((double)fromstream[streamofs]
+ fromstream[streamofs-2])
+ a1 * fromstream[streamofs-1]
- b1 * reg1
- b2 * reg2;
=-=-=
In which case there is some rangechecking to be done when streamofs<2

You could just use the coeffs, and stick them into whatever biquad code you have hanging around :)

DSP

	Date: 2007-02-17 10:44:00

	By: moc.loa@561kluafla

Still doesn't work. Either way its looking one each side of a centre value, so it doesn't change the maths. Not sure what the code should be. Ideas???

	Date: 2009-04-24 16:34:32

	By: moc.liamg@naecohsife

does this code work with float output?
I really need a notch filter, i will try the code.

	Date: 2011-05-12 11:22:57

	By: moc.oohay@skinyela

yes, there are some errors in this source.

Here is the correct version:

// (C) Sergey Aleynik. aleyniks@yahoo.com

 // BW_Coeff is changing from 0.0 to 1.0 (excluded) and the more the narrow:
 // | BW_Coeff | Real BandWidth (approxim.) |
 // | 0.975 | 0.00907 * Sampling_Frequency |
 // | 0.95 | 0.01814 * Sampling_Frequency |
 // | 0.9 | 0.03628 * Sampling_Frequency |

void Notch_Filter_Test(short int *Data_In,
 short int *Data_Out,
 long nData_Length,
 double Sampling_Frequency,
 double CutOff_Frequency,
 double BW_Coeff)
{
 // If wrong parameters:
 if((NULL == Data_In)||(Data_Out)||(nData_Length <= 0)) return;
 if((Sampling_Frequency < 0.0)||(CutOff_Frequency < 0.0)) return;
 if(CutOff_Frequency > (Sampling_Frequency/2)) return;
 if((BW_Coeff <= 0.0)||(BW_Coeff >= 1.0)) return;

 static const double pi = 3.141592654;

 // Filter coefficients:
 double z1x = cos(2*pi*CutOff_Frequency/Sampling_Frequency);
 double b0 = (1-BW_Coeff)*(1-BW_Coeff)/(2*(fabs(z1x)+1)) + BW_Coeff;
 double b2 = b0;
 double b1 = -2*z1x*b0;
 double a1 = -2*z1x*BW_Coeff;
 double a2 = BW_Coeff*BW_Coeff;

 // Filter internal vars:
 double y=0, y1=0, y2=0;
 double x0=0, x1=0, x2=0;

 long i;
 for(i=0; i<nData_Length; i++)
 {
 y = b0 * x0 + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2;
 y2 = y1;
 y1 = y;
 x2 = x1;
 x1 = x0;
 x0 = Data_In[i];

 if(y > 32767) y = 32767;
 else if (y < -32768) y = -32768;

 Data_Out[i] = (short int)y;
 }
}

	Date: 2011-11-11 03:30:26

	By: rf.liamtoh@abe.yrduabreivilo

Just an idea on coef notch :
 a0 = 1;
 a1 = -2 * cs;
a2 = 1;
b0 = 1 + alpha;
b1 = -2 * cs;
b2 = 1 - alpha;
 notch: H(s) = (s^2 + 1) / (s^2 + s/Q + 1);
 omega = 2*PI*cf/sample_rate;
sn = sin(omega);
cs = cos(omega);
alpha = sn/(2*Q);

One pole LP and HP

	Author or source: Bram

	Created: 2002-08-26 23:33:27

code

	1
2
3
4
5
6
7
8
9

	LP:
recursion: tmp = (1-p)*in + p*tmp with output = tmp
coefficient: p = (2-cos(x)) - sqrt((2-cos(x))^2 - 1) with x = 2*pi*cutoff/samplerate
coeficient approximation: p = (1 - 2*cutoff/samplerate)^2

HP:
recursion: tmp = (p-1)*in - p*tmp with output = tmp
coefficient: p = (2+cos(x)) - sqrt((2+cos(x))^2 - 1) with x = 2*pi*cutoff/samplerate
coeficient approximation: p = (2*cutoff/samplerate)^2

Comments

	Date: 2006-03-23 15:39:07

	By: moc.liamtoh@wta_sohpyks

coefficient: p = (2-cos(x)) - sqrt((2-cos(x))^2 - 1) with x = 2*pi*cutoff/samplerate

p is always -1 using the formula above. The square eliminates the squareroot and (2-cos(x)) - (2-cos(x)) is 0.

	Date: 2006-03-24 09:37:19

	By: q@q

Look again. The -1 is inside the sqrt.

	Date: 2008-08-11 09:34:07

	By: batlord[.A.T.]o2[.D.O.T.]pl

skyphos:
sqrt((2-cos(x))^2 - 1) doesn't equal
sqrt((2-cos(x))^2) + sqrt(- 1)

so

-1 can be inside the sqrt, because (2-cos(x))^2 will be always >= one.

	Date: 2009-07-13 01:22:43

	By: No

HP is wrong!
Or at least it does not work here. It acts like a lofi low-shelf. However this works:

HP:
recursion: tmp = (1-p)*in + p*tmp with output = in-tmp
coefficient: p = (2-cos(x)) - sqrt((2-cos(x))^2 - 1) with x = 2*pi*cutoff/samplerate
coeficient approximation: p = (1 - 2*cutoff/samplerate)^2

One pole filter, LP and HP

	Author or source: uh.etle.fni@yfoocs

	Type: Simple 1 pole LP and HP filter

	Created: 2006-10-08 14:53:38

notes

Slope: 6dB/Oct

Reference: www.dspguide.com

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	Process loop (lowpass):
out = a0*in - b1*tmp;
tmp = out;

Simple HP version: subtract lowpass output from the input (has strange behaviour towards nyquist):
out = a0*in - b1*tmp;
tmp = out;
hp = in-out;

Coefficient calculation:
x = exp(-2.0*pi*freq/samplerate);
a0 = 1.0-x;
b1 = -x;

Comments

	Date: 2007-01-05 11:43:21

	By: moc.liamtoh@ojer_jd

Why don't you just say:

Process loop (lowpass):
out = a0*in + b1*tmp;
tmp = out;

Simple HP version: subtract lowpass output from the input (has strange behaviour towards nyquist):
out = a0*in + b1*tmp;
tmp = out;
hp = in-out;

Coefficient calculation:
x = exp(-2.0*pi*freq/samplerate);
a0 = 1.0-x;
b1 = x;

	Date: 2007-01-06 04:12:56

	By: uh.etle.fni@yfoocs

There's a tradition among digital filter designers that the pole coefficients have a negative sign. Of course the other one is also valid, and sometimes these notations are mixed up.

If you're worried about the extra negation operation, then you could say

b1 = -x;
a0 = 1.0+b1;

so that there's no additional operation overhead.

-- peter schoffhauzer

	Date: 2007-01-06 16:26:27

	By: moc.erehwon@ydobon

Of course, you don't need tmp.

Process loop (lowpass):
out = a0*in + b1*out;

	Date: 2007-02-16 19:27:48

	By: uh.etle.fni@yfoocs

Indeed.

	Date: 2009-06-18 17:29:20

	By: moc.boohay@bob

Or...
out += a0 * (in - out);

:)

One pole, one zero LP/HP

	Author or source: ti.dniwni@tretsim

	Created: 2002-08-26 23:34:48

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	void SetLPF(float fCut, float fSampling)
{
 float w = 2.0 * fSampling;
 float Norm;

 fCut *= 2.0F * PI;
 Norm = 1.0 / (fCut + w);
 b1 = (w - fCut) * Norm;
 a0 = a1 = fCut * Norm;
}

void SetHPF(float fCut, float fSampling)
{
 float w = 2.0 * fSampling;
 float Norm;

 fCut *= 2.0F * PI;
 Norm = 1.0 / (fCut + w);
 a0 = w * Norm;
 a1 = -a0;
 b1 = (w - fCut) * Norm;
}

Where
out[n] = in[n]*a0 + in[n-1]*a1 + out[n-1]*b1;

Comments

	Date: 2006-01-15 01:12:26

	By: ten.tramepyh@renietsretep

what is n? lol...sorry but i mean this seriously! ;)

	Date: 2006-01-16 14:17:35

	By: ku.oc.snosrapsd@psdcisum

n is the index of sample being considered.

out[] is an array of samples being output, and in[] is the input array. you would construct a loop such that:
[Pseudocode]
loop n{0..numsamples-1}
 out[n] = in[n]*a0 + in[n-1]*a1 + out[n-1]*b1;
end loop;
[/Pseudocode]

You will need some cleverness so that [n-1] doesn't cause an index error when n=0, but I'll leave that to you :)

	Date: 2006-01-18 09:28:30

	By: ten.tramepyh@renietsretep

whoops - sorry, of course n = number... stupid me ;)
interesting code, i will see if can adapt that to delphi, shouldn´t be a big deal :)

i assume i dont need to place either setHPF or LPF into the samples loop, just the block itself?

	Date: 2006-01-23 10:57:26

	By: ku.oc.snosrapsd@psdcisum

absolutey - set the coefficients outside of the loop. There is the case of changes being made whilst the loop is running, depends what platform/host you are writing for.

I'm a delphi code as well. Feel free to use my posted address if you need to :) DSP

	Date: 2006-07-21 09:07:12

	By: moc.oohay@keelanej

Shouldn't that be float w = 2*PI*fSampling; ???

In which case we can simplify:

void SetLPF(float fCut, float fSampling)
{
a0 = fCut/(fSampling+fCut);
a1 = a0;
b1 = (fSampling-fCut)/(fSampling+fCut);
}

void SetHPF(float fCut, float fSampling)
{
a0 = fSampling/(fSampling+fCut);
a1 = -a0;
b1 = (fSampling-fCut)/(fSampling+fCut);
}

You can keep the norm = 1/(fSampling+fCut) if you like.

	Date: 2020-05-23

	By: JoergBitzer

The equation of the original contributor is correct. It is a first order Butterworth-Filter
H(s') = 1/(1+s') and then denormalized s' = s/wcut and transformed by the bilinear transform
s = 2f_s (z-1)/(z+1). Only the tan-prewarp is missing for fcut/wcut.

One zero, LP/HP

	Author or source: Bram

	Created: 2002-08-29 23:18:43

notes

LP is only 'valid' for cutoffs > samplerate/4
HP is only 'valid' for cutoffs < samplerate/4

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	theta = cutoff*2*pi / samplerate

LP:
H(z) = (1+p*z^(-1)) / (1+p)
out[i] = 1/(1+p) * in[i] + p/(1+p) * in[i-1];
p = (1-2*cos(theta)) - sqrt((1-2*cos(theta))^2 - 1)
Pi/2 < theta < Pi

HP:
H(z) = (1-p*z^(-1)) / (1+p)
out[i] = 1/(1+p) * in[i] - p/(1+p) * in[i-1];
p = (1+2*cos(theta)) - sqrt((1+2*cos(theta))^2 - 1)
0 < theta < Pi/2

One-Liner IIR Filters (1st order)

	Author or source: moc.edocseira@sirhc

	Type: IIR 1-pole

	Created: 2009-01-18 10:53:44

notes

Here is a collection of one liner IIR filters.
Each filter has been transformed into a single C++ expression.

The filter parameter is f or g, and the state variable that needs to be kept around
between interations is s.

- Christian

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	 101 Leaky Integrator

 a0 = 1
 b1 = 1 - f

 out = s += in - f * s;

 102 Basic Lowpass (all-pole)

 A first order lowpass filter, by finite difference appoximation (differentials --> differences).

 a0 = f
 b1 = 1 - f

 out = s += f * (in - s);

 103 Lowpass with inverted control

 Same as above, except for different filter parameter is now inverted.
 In this case, g equals the location of the pole.

 a0 = g - 1
 b1 = g

 out = s = in + g * (s - in);

 104 Lowpass with zero at Nyquist

 A first order lowpass filter, by via the conformal map of the z-plane (0..infinity --> 0..Nyquist).

 a0 = f
 a1 = f
 b1 = 1 - 2 * f

 s = temp + (out = s + (temp = f * (in - s)));

 105 Basic Highpass (DC-blocker)

 Input complement to basic lowpass, yields a finite difference highpass filter.

 a0 = 1 - f
 a1 = f - 1
 b1 = 1 - f

 out = in - (s += f * (in - s));

 106 Highpass with forced unity gain at Nyquist

 Input complement to filter 104, yields a conformal map highpass filter.

 a0 = 1 - f
 a1 = f - 1
 b1 = 1 - 2 * f

 out = in + temp - (s += 2 * (temp = f * (in - s)));

 107 Basic Allpass

 This corresponds to a first order allpass filter,
 where g is the location of the pole in the range -1..1.

 a0 = -g
 a1 = 1
 b1 = g

 s = in + g * (out = s - g * in);

Comments

	Date: 2016-03-31 14:21:04

	By: moc.liamg@1ydarbfmot

Great help, although could you advise as to where the parameters a0, a1 and b1 are used for the high pass filter 105?

Thanks

Output Limiter using Envelope Follower in C++

	Author or source: moc.oohay@nniveht

	Created: 2009-04-27 08:46:35

notes

Here's a Limiter class that will automatically compress a signal if it would cause
clipping.

You can control the attack and decay parameters of the limiter. The attack determines how
quickly the limiter will respond to a sudden increase in output level. I have found that
attack=10ms and decay=500ms works very well for my application.

This C++ example demonstrates the use of template parameters to allow the same piece of
code to work with either floats or doubles (without needing to make a duplicate of the
code). As well as allowing the same code to work with interleaved audio data (any number
of channels) or linear, via the "skip" parameter. Note that even in this case, the
compiler produces fully optimized output in the case where the template is instantiated
for a compile-time constant value of skip.

In Limiter::Process() you can see the envelope class getting called for one sample, this
shows how even calling a function for a single sample can get fully optimized out by the
compiler if code is structured correctly.

While this is a fairly simple algorithm, I wanted to share the technique for using
template parameters to develop routines that can work with any size floating point
representation or multichannel audio data, while still remaining fully optimized.

These classes were based on ideas found in the musicdsp.org archives.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

	class EnvelopeFollower
{
public:
 EnvelopeFollower();

 void Setup(double attackMs, double releaseMs, int sampleRate);

 template<class T, int skip>
 void Process(size_t count, const T *src);

 double envelope;

protected:
 double a;
 double r;
};

//----------

inline EnvelopeFollower::EnvelopeFollower()
{
 envelope=0;
}

inline void EnvelopeFollower::Setup(double attackMs, double releaseMs, int sampleRate)
{
 a = pow(0.01, 1.0 / (attackMs * sampleRate * 0.001));
 r = pow(0.01, 1.0 / (releaseMs * sampleRate * 0.001));
}

template<class T, int skip>
void EnvelopeFollower::Process(size_t count, const T *src)
{
 while(count--)
 {
 double v=::fabs(*src);
 src+=skip;
 if(v>envelope)
 envelope = a * (envelope - v) + v;
 else
 envelope = r * (envelope - v) + v;
 }
}

//----------

struct Limiter
{
 void Setup(double attackMs, double releaseMs, int sampleRate);

 template<class T, int skip>
 void Process(size_t nSamples, T *dest);

private:
 EnvelopeFollower e;
};

//----------

inline void Limiter::Setup(double attackMs, double releaseMs, int sampleRate)
{
 e.Setup(attackMs, releaseMs, sampleRate);
}

template<class T, int skip>
void Limiter::Process(size_t count, T *dest)
{
 while(count--)
 {
 T v=*dest;
 // don't worry, this should get optimized
 e.Process<T, skip>(1, &v);
 if(e.envelope>1)
 *dest=*dest/e.envelope;
 dest+=skip;
 }
}

Peak/Notch filter

	Author or source: ed.bew@raebybot

	Type: peak/notch

	Created: 2002-12-16 19:01:28

notes

// Peak/Notch filter
// I don't know anymore where this came from, just found it on
// my hard drive :-)
// Seems to be a peak/notch filter with adjustable slope
// steepness, though slope gets rather wide the lower the
// frequency is.
// "cut" and "steep" range is from 0..1
// Try to feed it with white noise, then the peak output does
// rather well eliminate all other frequencies except the given
// frequency in higher frequency ranges.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	var f,r:single;
 outp,outp1,outp2:single; // init these with 0!
const p4=1.0e-24; // Pentium 4 denormal problem elimination

function PeakNotch(inp,cut,steep:single;ftype:integer):single;
begin
 r:=steep*0.99609375;
 f:=cos(pi*cut);
 a0:=(1-r)*sqrt(r*(r-4*(f*f)+2)+1);
 b1:=2*f*r;
 b2:=-(r*r);
 outp:=a0*inp+b1*outp1+b2*outp2+p4;
 outp2:=outp1;
 outp1:=outp;
 if ftype=0 then
 result:=outp //peak
 else
 result:=inp-outp; //notch
end;

Comments

	Date: 2010-03-02 03:19:21

	By: slo77y (at) yahoo.de

this code sounds bitcrushed like hell translated to c++, any suggestions ?

 float pi = 3.141592654;
 float r = dQFactor*0.99609375;
 float f = cos(pi*iFreq);
 float a0 = (1-r) * sqrt (r * (r-4 * (f * f) + 2) + 1);
 float b1 = 2 * f * r;
 float b2 = - (r * r);
 float outp = 0.0, outp1 = 0.0, outp2 = 0.0;

 for (i = 0; i < iSamples; i++)
 {
 float inp = fInput[i];

 outp = a0 * inp + b1 * outp1 + b2 * outp2 + p4;
 outp2 = outp1;
 outp1 = outp;

 fOutput[i] = (inp-outp); //notch
 }

	Date: 2012-05-05 08:22:08

	By: ten.xoc@53namhsima

After about 3 hours wondering why I was getting back the original un-altered audio, I finally got this version of a keeper filter, which I used with absurdly good success on a power grid comb filter. When the power grid filter was fed with audio from a lamp cord with one 1 Megohm resistor on each prong, all sorts of cool sounds become audio when the output is amplified 40 dB. For wall cord audio, use 60.0 for the cutoff.
---the function is below---
double keeper_1(double input, double cutoff,double rate,double *magnitude)
{
 const double steepness=1.0;
 const double p4=1.0e-24;
 static unsigned char first=1;
 static double nfreq=0.1;
 static double old_cutoff=0.0;
 static double the_magnitude=0;
 static double average=0.0;
 static int average_count=0;
 static double a=0.0;
 static double r=0.0;
 static double coeff=0.0;
 static double delay[3]={0.0,0.0,0.0};
 static double delay1[3]={0.0,0.0,0.0};
 static double delay2[3]={0.0,0.0,0.0};
 static double delay3[3]={0.0,0.0,0.0};
 static double b[3]={0.0,0.0,0.0};
 if(first==1 || cutoff!=old_cutoff)
 {
 r=steepness * 0.99609375;
 nfreq=(cutoff/(double)rate) * 2.0 ;
 coeff= cos(M_PI * nfreq);
 a=(1.0 - r) * sqrt(r * (r - 4 * (coeff * coeff) + 2) +1);
 b[1]=2 * coeff * r;
 b[2]=-(r * r);

 first=0;
 }

 delay3[0] = a * input + b[1] * delay3[1] + b[2] * delay3[2] + p4;

 delay3[2]=delay3[1];
 delay3[1]=delay3[0];

 delay2[0] = a * delay3[0] + b[1] * delay2[1] + b[2] * delay2[2] + p4;

 delay2[2]=delay2[1];
 delay2[1]=delay2[0];

 delay1[0] = a * delay2[0] + b[1] * delay1[1] + b[2] * delay1[2] + p4;

 delay1[2]=delay1[1];
 delay1[1]=delay1[0];

 delay[0] = a * delay1[0] + b[1] * delay[1] + b[2] * delay[2] + p4;

 delay[2]=delay[1];
 delay[1]=delay[0];
 average+=delay[0];
 average_count++;
 if(average_count>dft_size-1)
 {
 double aver=average/(double)dft_size;
 the_magnitude=sqrt(aver * aver); /* we're only interested in the root mean square */
 average=0.0;
 average_count=0;
 }
 magnitude[0]=the_magnitude;
 old_cutoff=cutoff;
 return delay[0];
}

Perfect LP4 filter

	Author or source: rf.eerf@aipotreza

	Type: LP

	Created: 2008-03-13 10:40:46

notes

hacked from the exemple of user script in FL Edison

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	TLP24DB = class
constructor create;
procedure process(inp,Frq,Res:single;SR:integer);
private
t, t2, x, f, k, p, r, y1, y2, y3, y4, oldx, oldy1, oldy2, oldy3: Single;
public outlp:single;
end;
--
implementation

constructor TLP24DB.create;
begin
 y1:=0;
 y2:=0;
 y3:=0;
 y4:=0;
 oldx:=0;
 oldy1:=0;
 oldy2:=0;
 oldy3:=0;
end;
procedure TLP24DB.process(inp: Single; Frq: Single; Res: Single; SR: Integer);
begin
 f := (Frq+Frq) / SR;
 p:=f*(1.8-0.8*f);
 k:=p+p-1.0;
 t:=(1.0-p)*1.386249;
 t2:=12.0+t*t;
 r := res*(t2+6.0*t)/(t2-6.0*t);
 x := inp - r*y4;
 y1:=x*p + oldx*p - k*y1;
 y2:=y1*p+oldy1*p - k*y2;
 y3:=y2*p+oldy2*p - k*y3;
 y4:=y3*p+oldy3*p - k*y4;
 y4 := y4 - ((y4*y4*y4)/6.0);
 oldx := x;
 oldy1 := y1+_kd;
 oldy2 := y2+_kd;;
 oldy3 := y3+_kd;;
 outlp := y4;
end;

// the result is in outlp
// 1/ call MyTLP24DB.Process
// 2/then get the result from outlp.
// this filter have a fantastic sound w/a very special res
// _kd is the denormal killer value.

Comments

	Date: 2008-10-20 07:44:35

	By: moc.liamg@321tiloen

This is basically a Moog filter.

	Date: 2010-09-16 23:07:30

	By: moc.liamG@0356orbratiug

Same as http://www.musicdsp.org/showArchiveComment.php?ArchiveID=24
but seems to be in pascal.

Pink noise filter

	Author or source: Paul Kellett

	Created: 2002-02-11 17:40:39

	Linked files: pink.txt.

notes

(see linked file)

Comments

	Date: 2005-02-10 12:23:55

	By: ed.ap-ymot@ymoT

 Hi, first of all thanks a lot for this parameters.
I'm new to digital fitering, and need a 3dB highpass to correct a pink spectrum which is used for measurement back to white for displaying the impulseresponse.
I checked some pages, but all demand a fixed ratio between d0 and d1 for a 6db lowpass. But this ratio is not given on your filters, so I'm not able to transform them into highpasses.
Any hints?

Tomy

	Date: 2005-02-10 19:58:16

	By: ed.ap-ymot@ymoT

Hi, first of all thanks a lot for this parameters. I'm new to digital fitering, and need a 3dB highpass to correct a pink spectrum which is used for measurement back to white for displaying the impulseresponse.I checked some pages, but all demand a fixed ratio between d0 and d1 for a 6db lowpass. But this ratio is not given on your filters, so I'm not able to transform them into highpasses.Any hints?Tomy

	Date: 2005-02-14 14:57:04

	By: ed.luosfosruoivas@naitsirhC

If computing power doesn't matter, than you may want do design the pink noise in the frequency domain and transform it backt to timedomain via fft.
Christian

	Date: 2005-03-03 16:34:49

	By: rf.oohay@dejamdaddah

HI, could you please give me a code matlab to have a pink noise. I
tested a code where one did all into frequential mode then made an ifft.
Thank you

	Date: 2009-03-15 21:56:21

	By: moc.liamg@321tiloen

Here is a slightly less efficient implementation, which can be used to calculate coefficients for different samplerates (in ranges).

Note: You may also want to check the sample-and-hold method.

//trc - test rate coeff, srate - samplerate
trc = 1;
sr = srate*trc;

//f0-f6 - freq array in hz
//
//---------------------
//samplerate <= 48100hz
f0 = 4752.456;
f1 = 4030.961;
f2 = 2784.711;
f3 = 1538.461;
f4 = 357.681;
f5 = 70;
f6 = 30;
//---------------------
//samplerate > 44800hz && samplerate <= 96000hz
f0 = 8227.219;
f1 = 8227.219;
f2 = 6388.570;
f3 = 3302.754;
f4 = 479.412;
f5 = 151.070;
f6 = 54.264;
//---------------------
//samplerate > 96000khz && samplerate < 192000khz
f0 = 9211.912;
f1 = 8621.096;
f2 = 8555.228;
f3 = 8292.754;
f4 = 518.334;
f5 = 163.712;
f6 = 240.241;
//---------------------
//samplerate >= 192000hz
f0 = 10000;
f1 = 10000;
f2 = 10000;
f3 = 10000;
f4 = 544.948;
f5 = 142.088;
f6 = 211.616;

//----------------------
//calculate coefficients
k0 = exp(-2*$pi*f0/sr);
k1 = exp(-2*$pi*f1/sr);
k2 = exp(-2*$pi*f2/sr);
k3 = exp(-2*$pi*f3/sr);
k4 = exp(-2*$pi*f4/sr);
k5 = exp(-2*$pi*f5/sr);
k6 = exp(-2*$pi*f6/sr);

--- sample loop ---
//white - noise input
b0 = k0*white+k0*b0;
b1 = k1*white+k1*b1;
b2 = k2*white+k2*b2;
b3 = k3*white+k3*b3;
b4 = k4*white+k4*b4;
b5 = k5*white+k5*b5;
b6 = k6*white+k6*b6;
pink = (b0+b1+b2+b3+b4+b5+white-b6);

output = pink;
--- sample loop ---

Basically if you use the same coefficients, if comparing some outputs, you would notice a degradation in the filter at higher sample rates - Thus the different ranges. But the quality of your white noise (PRNG) may be important also.

These 'should' work...They do fairly well, at least mathematically for rendered outputs.

Lubomir

Plot Filter (Analyze filter characteristics)

	Author or source: ku.oc.oohay@895rennacs

	Type: Test

	Created: 2007-11-26 14:05:40

notes

As a newbe, and one that has very, very little mathematical background, I wanted to see
what all the filters posted here were doing to get a feeling of what was going on here. So
with what I picked up from this site, I wrote a little filter test program. Hope it is of
any use to you.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

	//
// plotFilter.cpp
//
// Simple test program to plot filter characteristics of a particular
// filter to stdout. Nice to see how the filter behaves under various
// conditions (cutoff/resonance/samplerate/etc.).
//
// Should work on any platform that supports C++ and should work on C
// as well with a little rework. It justs prints text, so no graphical
// stuff is used.
//
// Filter input and filter output should be between -1 and 1 (floating point)
//
// Output is a plotted graph (as text) with a logarithmic scale
// (so half a plotted bar is half of what the human ear can hear).
// If you dont like the vertical output, just print it and turn the paper :-)
//

#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>

#define myPI 3.1415926535897932384626433832795

#define FP double
#define DWORD unsigned long
#define CUTOFF 5000
#define SAMPLERATE 48000

// take enough samples to test the 20 herz frequency 2 times
#define TESTSAMPLES (SAMPLERATE/20) * 2

//
// Any filter can be tested, as long as it outputs
// between -1 and 1 (floating point). This filter
// can be replaced with any filter you would like
// to test.
//
class Filter {
 FP sdm1; // sample data minus 1
 FP a0; // multiply factor on current sample
 FP b1; // multiply factor on sdm1
public:
 Filter (void) {
 sdm1 = 0;
 // init on no filtering
 a0 = 1;
 b1 = 0;
 }
 void init(FP freq, FP samplerate) {
 FP x;
 x = exp(-2.0 * myPI * freq / samplerate);
 sdm1 = 0;
 a0 = 1.0 - x;
 b1 = -x;
 }
 FP getSample(FP sample) {
 FP out;
 out = (a0 * sample) - (b1 * sdm1);
 sdm1 = out;
 return out;
 }
};

int
main(void)
{
 DWORD freq;
 DWORD spos;
 double sIn;
 double sOut;
 double tIn;
 double tOut;
 double dB;
 DWORD tmp;

 // define the test filter
 Filter filter;

 printf(" 9bB 6dB 3dB 0dB\n");
 printf(" freq dB | | | | \n");

 // test frequencies 20 - 20020 with 100 herz steps
 for (freq=20; freq<20020; freq+=100) {

 // (re)initialize the filter
 filter.init(CUTOFF, SAMPLERATE);

 // let the filter do it's thing here
 tIn = tOut = 0;
 for (spos=0; spos<TESTSAMPLES; spos++) {
 sIn = sin((2 * myPI * spos * freq) / SAMPLERATE);
 sOut = filter.getSample(sIn);
 if ((sOut>1) || (sOut<-1)) {
 // If filter is no good, stop the test
 printf("Error! Clipping!\n");
 return(1);
 }
 if (sIn >0) tIn += sIn;
 if (sIn <0) tIn -= sIn;
 if (sOut>0) tOut += sOut;
 if (sOut<0) tOut -= sOut;
 }

 // analyse the results
 dB = 20*log(tIn/tOut);
 printf("%5d %5.1f ", freq, dB);
 tmp = (DWORD)(60.0/pow(2, (dB/3)));
 while (tmp) {
 putchar('#');
 tmp--;
 }
 putchar('\n');
 }
 return 0;
}

Comments

	Date: 2008-01-01 20:45:13

	By: niels m.

You need to change the log() to log10() to get the correct answer in dB's.

You can also replace the if(sIn >0) .. -= sOut; by:

tIn += sIn*sIn;
tOut += sOut*sOut;

this will measure signal power instead of amplitude. If you do this, you also need to change 20*log10() to 10*log10().

Nice and useful tool for exploring filters. Thanks!

Plotting R B-J Equalisers in Excel

	Author or source: Web Surf

	Created: 2006-03-07 09:32:57

	Linked files: rbj_eq.xls.

notes

Interactive XL sheet that shows frequency response of the R B-K high pass/low pass,
Peaking and Shelf filters

Useful if --
--You want to validate your implementation against mine

--You want to convert given Biquad coefficients into Fo/Q/dBgain by visual curve fitting.

--You want the Coefficients to implement a particular fixed filter

-- Educational aid

Many thanks to R B-J for his personal support !!
Web Surf WebsurffATgmailDOTcom

code

	1

	see attached file

Comments

	Date: 2006-04-14 07:07:00

	By: rf.liamtoh@57eninreS_luaP

It also works perfectly with the openoffice2.02 suite :-)

	Date: 2007-07-24 15:00:09

	By: jackmattson att gmial

Ok, so I'm about to make my first filter so I really have no idea about coefficients yet but damn this is the coolest .xls I've ever seen! And I see a bunch every day. :?

	Date: 2007-09-13 05:54:54

	By: WebsurffATgmailDOTcom

Thanks,

It's just an implementation of the R B-J cookbook formulae for parametric equalisers. RB-J personally assisted me while I was writing this XLS. The real Kudos goes out to him !!

I wrote this as in intermediate tool while I was writing some Guitar effect DSP routines.

One prob it has : If the Q is too sharp, the peak filters have a very sharp tip. It is possible then as you slide the F sliders, that the chosen F is not one of the data points that I am plotting.

The net result is that the peak of a hi-Q filter seems to increase/decrease as you move F. This is a shortcoming of the way I programmed my XLS and is not a problem with the R B-J equations.

PS : I saw the same problem with other similar S/W on the net !!!

PS : Anyone know how to do curve fitting so that we enter in some points through which the frequency response must pass, and it generates best set of F,G,Q ?

	Date: 2011-04-18 02:30:51

	By: WebsurffATgmailDOTcom

Date: Sun, 17 Apr 2011 12:34:09
Subject: RBJ Filter Plotter Spreadsheet
From: Robert Bonini <XXXXXXXXXX@gmail.com>
To: websurff @ gmail . com

Just wanted to complement you on the good work. I came across your RBJ filter plotter spreadsheet, and it's quite good.

The version I have is dated Feb.2006, so this may have been addressed already but I did notice a small issue with the sample frequency input.

Anything other than 44.1 KHz would cause the response curves to peak at incorrect values on the x axis. The normalized frequency 'w' was
being referenced to 44100, and not to the Fs cell. I modified the formula to absolute reference B56 and it solved that problem.

Thanks for your great work,
-robert

Polyphase Filters

	Author or source: C++ source code by Dave from Muon Software

	Type: polyphase filters, used for up and down-sampling

	Created: 2002-01-17 02:14:53

	Linked files: BandLimit.cpp.

	Linked files: BandLimit.h.

Comments

	Date: 2005-02-16 00:14:08

	By: ed.bew@ihsugat_aranoias

can someone give me a hint for a paper where this stuff is from?

	Date: 2005-03-29 20:39:59

	By: ABC

From there: http://www.cmsa.wmin.ac.uk/~artur/Poly.html

There is also this library, implementing the same filter, but optimised for down/upsampling and ported to SSE and 3DNow!:
http://ldesoras.free.fr/prod.html#src_hiir

	Date: 2005-07-27 09:22:16

	By: ku.oc.nez@mahcleb.bor

There is an error in the 12th order, steep filter coefficients. Having checked the output against that produced by HIIR (see previous comment), i have identified the source of the error - the 4th b coefficient 0.06329609551399348, should be 0.6329609551399348.

	Date: 2008-04-06 08:58:52

	By: bla

you also need to delete the pointers inside the array

CAllPassFilterCascade::~CAllPassFilterCascade()
{
 for (int i=0;i<numfilters;i++)
 {
 delete allpassfilter[i];
 }

 delete[] allpassfilter;
};

	Date: 2008-11-05 14:50:18

	By: moc.tob.3gall1pso1dua@0fn1

some questions.. is it normal for these halfband filters to cause significant gain loss? sonogram analysis shows a decrease in SNR if I have read the results correctly.

if using these filters for oversampling and I do this:

upsample
halfband filter
process
halfband filter
decimate (discard samples)

then presumably the second halfband filter does the antialiasing at half the new sampling rate?

	Date: 2009-02-26 21:39:21

	By: moc.toohay@bob

Hello, I'm getting the high pass from the function by subtracting the 'oldout' variable.

output=(filter_a->process(input)-oldout)*0.5;

But this does not make an ideal QMF, I'm getting pass-band aliasing, so I guessing the phase is off slightly between the low and high.
Is this the correct way of getting the high band?

Cheers,
Dave P

	Date: 2010-01-21 19:31:46

	By: bobby

Is the cutoff at 20kHz? What sample rate are these coefficients for? How would I calculate suitable coefficients for arbitrary sample rates?

	Date: 2011-06-11 18:13:28

	By: moc.psdallahlav@naes

It is worth noting that if these filters are being used for upsampling/downsampling, the "noble identity" can be used to reduce the CPU cost. The basic idea is that operations that can be expressed in the form:

filter that uses z^-N for its states -> downsample by N

can be rearranged to use the form

downsample by N -> filter that uses z^-1 for its states

The same property holds true for upsampling. See

http://mue.music.miami.edu/thesis/jvandekieft/jvchapter3.htm

for more details.

For the above code, this would entail creating an alternative allpass process function, that uses the z^-1 for its states, and then rearranging some of the operations.

Polyphase Filters (Delphi)

	Author or source: moc.liamtoh@retsbomyrgnayrev

	Type: polyphase filters, used for up and down-sampling

	Created: 2006-07-05 20:13:50

notes

Pascal conversion of C++ code by Dave from Muon Software. Conversion by Shannon Faulkner.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

	{

polyphase filters, used for up and down-sampling
original c++ code by Dave from Muon Software found
at MusicDSP.
rewritten in pascal by Shannon Faulkner, 4/7/06.

}

unit uPolyphase;

interface

type
 TAllPass=class
 private
 a,x0,x1,x2,y0,y1,y2:single;
 public
 constructor create(coefficient:single);
 function Process(input:single):single;
 end;

 TAllPassFilterCascade=class
 private
 AllPassFilters:array of TAllPass;
 fOrder:integer;
 public
 constructor create(coefficients:psingle;Order:integer);
 function Process(input:single):single;
 end;

 THalfBandFilter=class
 private
 fOrder:integer;
 OldOut:single;
 aCoeffs,bCoeffs:array of single;
 FilterA,FilterB:TAllPassFilterCascade;
 public
 constructor create(order:integer;Steep:boolean);
 function process(input:single):single;
 end;

implementation
//----------- AllPass Filter -------------------
//----------- AllPass Filter --
//----------- AllPass Filter --
constructor TAllPass.create(coefficient:single);
begin
 a:=coefficient;

 x0:=0;
 x1:=0;
 x2:=0;

 y0:=0;
 y1:=0;
 y2:=0;
end;

function TAllPass.Process(input:single):single;
var output:single;
begin
 //shuffle inputs
 x2:=x1;
 x1:=x0;
 x0:=input;

 //shuffle outputs
 y2:=y1;
 y1:=y0;

 //allpass filter 1
 output:=x2+((input-y2)*a);

 y0:=output;

 result:=output;
end;
//------------ AllPass Filter Cascade -------------
//------------ AllPass Filter Cascade -------------
//------------ AllPass Filter Cascade -------------
constructor TAllPassFilterCascade.create(coefficients:psingle;Order:integer);
var i:integer;
begin
 fOrder:=Order;
 setlength(AllPassFilters,fOrder);
 for i:=0 to fOrder-1 do
 begin
 AllPassFilters[i]:=TAllPass.create(coefficients^);
 inc(coefficients);
 end;
end;

function TAllPassFilterCascade.Process(input:single):single;
var
 output:single;
 i:integer;
begin
 output:=input;
 for i:=0 to fOrder-1 do
 begin
 output:=allpassfilters[i].Process(output);
 end;
 result:=output;
end;
//-------------- Halfband Filter ---
//-------------- Halfband Filter ---------------------
//-------------- Halfband Filter ---
constructor THalfBandFilter.create(order:integer;Steep:boolean);
begin
 fOrder:=order;
 setlength(aCoeffs,Order div 2);
 setlength(bCoeffs,Order div 2);

 if steep=true then
 begin
 if (order=12) then //rejection=104dB, transition band=0.01
 begin
 aCoeffs[0]:=0.036681502163648017;
 aCoeffs[1]:=0.2746317593794541;
 aCoeffs[2]:=0.56109896978791948;
 aCoeffs[3]:=0.769741833862266;
 aCoeffs[4]:=0.8922608180038789;
 aCoeffs[5]:=0.962094548378084;

 bCoeffs[0]:=0.13654762463195771;
 bCoeffs[1]:=0.42313861743656667;
 bCoeffs[2]:=0.6775400499741616;
 bCoeffs[3]:=0.839889624849638;
 bCoeffs[4]:=0.9315419599631839;
 bCoeffs[5]:=0.9878163707328971;
 end
 else if (order=10) then //rejection=86dB, transition band=0.01
 begin
 aCoeffs[0]:=0.051457617441190984;
 aCoeffs[1]:=0.35978656070567017;
 aCoeffs[2]:=0.6725475931034693;
 aCoeffs[3]:=0.8590884928249939;
 aCoeffs[4]:=0.9540209867860787;

 bCoeffs[0]:=0.18621906251989334;
 bCoeffs[1]:=0.529951372847964;
 bCoeffs[2]:=0.7810257527489514;
 bCoeffs[3]:=0.9141815687605308;
 bCoeffs[4]:=0.985475023014907;
 end
 else if (order=8) then //rejection=69dB, transition band=0.01
 begin
 aCoeffs[0]:=0.07711507983241622;
 aCoeffs[1]:=0.4820706250610472;
 aCoeffs[2]:=0.7968204713315797;
 aCoeffs[3]:=0.9412514277740471;

 bCoeffs[0]:=0.2659685265210946;
 bCoeffs[1]:=0.6651041532634957;
 bCoeffs[2]:=0.8841015085506159;
 bCoeffs[3]:=0.9820054141886075;
 end
 else if (order=6) then //rejection=51dB, transition band=0.01
 begin
 aCoeffs[0]:=0.1271414136264853;
 aCoeffs[1]:=0.6528245886369117;
 aCoeffs[2]:=0.9176942834328115;

 bCoeffs[0]:=0.40056789819445626;
 bCoeffs[1]:=0.8204163891923343;
 bCoeffs[2]:=0.9763114515836773;
 end
 else if (order=4) then //rejection=53dB,transition band=0.05
 begin
 aCoeffs[0]:=0.12073211751675449;
 aCoeffs[1]:=0.6632020224193995;

 bCoeffs[0]:=0.3903621872345006;
 bCoeffs[1]:=0.890786832653497;
 end
 else //order=2, rejection=36dB, transition band=0.1
 begin
 aCoeffs[0]:=0.23647102099689224;
 bCoeffs[0]:=0.7145421497126001;
 end;
 end else //softer slopes, more attenuation and less stopband ripple
 begin
 if (order=12) then //rejection=104dB, transition band=0.01
 begin
 aCoeffs[0]:=0.01677466677723562;
 aCoeffs[1]:=0.13902148819717805;
 aCoeffs[2]:=0.3325011117394731;
 aCoeffs[3]:=0.53766105314488;
 aCoeffs[4]:=0.7214184024215805;
 aCoeffs[5]:=0.8821858402078155;

 bCoeffs[0]:=0.06501319274445962;
 bCoeffs[1]:=0.23094129990840923;
 bCoeffs[2]:=0.4364942348420355;

 //bug fix - coefficient changed,
 //rob[DOT]belcham[AT]zen[DOT]co[DOT]uk
 //bCoeffs[3]:=0.06329609551399348; //original coefficient
 bCoeffs[3]:=0.6329609551399348; //correct coefficient

 bCoeffs[4]:=0.80378086794111226;
 bCoeffs[5]:=0.9599687404800694;
 end
 else if (order=10) then //rejection=86dB, transition band=0.01
 begin
 aCoeffs[0]:=0.02366831419883467;
 aCoeffs[1]:=0.18989476227180174;
 aCoeffs[2]:=0.43157318062118555;
 aCoeffs[3]:=0.6632020224193995;
 aCoeffs[4]:=0.860015542499582;

 bCoeffs[0]:=0.09056555904993387;
 bCoeffs[1]:=0.3078575723749043;
 bCoeffs[2]:=0.5516782402507934;
 bCoeffs[3]:=0.7652146863779808;
 bCoeffs[4]:=0.95247728378667541;
 end
 else if (order=8) then //rejection=69dB, transition band=0.01
 begin
 aCoeffs[0]:=0.03583278843106211;
 aCoeffs[1]:=0.2720401433964576;
 aCoeffs[2]:=0.5720571972357003;
 aCoeffs[3]:=0.827124761997324;

 bCoeffs[0]:=0.1340901419430669;
 bCoeffs[1]:=0.4243248712718685;
 bCoeffs[2]:=0.7062921421386394;
 bCoeffs[3]:=0.9415030941737551;
 end
 else if (order=6) then //rejection=51dB, transition band=0.01
 begin
 aCoeffs[0]:=0.06029739095712437;
 aCoeffs[1]:=0.4125907203610563;
 aCoeffs[2]:=0.7727156537429234;

 bCoeffs[0]:=0.21597144456092948;
 bCoeffs[1]:=0.6043586264658363;
 bCoeffs[2]:=0.9238861386532906;
 end
 else if (order=4) then //rejection=53dB,transition band=0.05
 begin
 aCoeffs[0]:=0.07986642623635751;
 aCoeffs[1]:=0.5453536510711322;

 bCoeffs[0]:=0.28382934487410993;
 bCoeffs[1]:=0.8344118914807379;
 end
 else //order=2, rejection=36dB, transition band=0.1
 begin
 aCoeffs[0]:=0.23647102099689224;
 bCoeffs[0]:=0.7145421497126001;
 end;
 end;

 FilterA:=TAllPassFilterCascade.create(@aCoeffs[0],fOrder div 2);
 FilterB:=TAllPassFilterCascade.create(@bCoeffs[0],fOrder div 2);

 oldout:=0;
end;

function THalfBandFilter.process(input:single):single;
begin
 result:=(FilterA.Process(input)+oldout)*0.5;
 oldout:=FilterB.Process(input);
end;

end.

Poor Man’s FIWIZ

	Author or source: moc.oohay@ljbliam

	Type: Filter Design Utility

	Created: 2007-03-22 15:02:29

notes

FIWIZ is a neat little filter design utility that uses a genetic programming technique
called Differential Evolution. As useful as it is, it looks like it took about a week to
write, and is thus very undeserving of the $70 license fee. So I decided to write my own.
There's a freely available optimizer class that uses Differential Evolution and I patched
it together with some filter-specific logic.

Use of the utility requires the ability to do simple coding in C, but you need only revise
a single function, which basically describes your filter specification. There's a big
comment in the main source file that clarifies things a bit more.

Although it's not as easy to use as FIWIZ, it's arguably more powerful because your
specifications are limited only by what you can express in C, whereas FIWIZ is completely
GUI based.

Another thing: I'm afraid that due to the use of _kbhit and _getch, the code is a bit
Microsofty, but you can take those out and the code will still be basically usable.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506

	// First File: DESolver.cpp

#include <stdio.h>
#include <memory.h>
#include <conio.h>
#include "DESolver.h"

#define Element(a,b,c) a[b*nDim+c]
#define RowVector(a,b) (&a[b*nDim])
#define CopyVector(a,b) memcpy((a),(b),nDim*sizeof(double))

DESolver::DESolver(int dim,int popSize) :
 nDim(dim), nPop(popSize),
 generations(0), strategy(stRand1Exp),
 scale(0.7), probability(0.5), bestEnergy(0.0),
 trialSolution(0), bestSolution(0),
 popEnergy(0), population(0)
{
 trialSolution = new double[nDim];
 bestSolution = new double[nDim];
 popEnergy = new double[nPop];
 population = new double[nPop * nDim];

 return;
}

DESolver::~DESolver(void)
{
 if (trialSolution) delete trialSolution;
 if (bestSolution) delete bestSolution;
 if (popEnergy) delete popEnergy;
 if (population) delete population;

 trialSolution = bestSolution = popEnergy = population = 0;
 return;
}

void DESolver::Setup(double *min,double *max,
 int deStrategy,double diffScale,double crossoverProb)
{
 int i;

 strategy = deStrategy;
 scale = diffScale;
 probability = crossoverProb;

 for (i=0; i < nPop; i++)
 {
 for (int j=0; j < nDim; j++)
 Element(population,i,j) = RandomUniform(min[j],max[j]);

 popEnergy[i] = 1.0E20;
 }

 for (i=0; i < nDim; i++)
 bestSolution[i] = 0.0;

 switch (strategy)
 {
 case stBest1Exp:
 calcTrialSolution = &DESolver::Best1Exp;
 break;

 case stRand1Exp:
 calcTrialSolution = &DESolver::Rand1Exp;
 break;

 case stRandToBest1Exp:
 calcTrialSolution = &DESolver::RandToBest1Exp;
 break;

 case stBest2Exp:
 calcTrialSolution = &DESolver::Best2Exp;
 break;

 case stRand2Exp:
 calcTrialSolution = &DESolver::Rand2Exp;
 break;

 case stBest1Bin:
 calcTrialSolution = &DESolver::Best1Bin;
 break;

 case stRand1Bin:
 calcTrialSolution = &DESolver::Rand1Bin;
 break;

 case stRandToBest1Bin:
 calcTrialSolution = &DESolver::RandToBest1Bin;
 break;

 case stBest2Bin:
 calcTrialSolution = &DESolver::Best2Bin;
 break;

 case stRand2Bin:
 calcTrialSolution = &DESolver::Rand2Bin;
 break;
 }

 return;
}

bool DESolver::Solve(int maxGenerations)
{
 int generation;
 int candidate;
 bool bAtSolution;
 int generationsPerLoop = 10;

 bestEnergy = 1.0E20;
 bAtSolution = false;

 for (generation=0;
 (generation < maxGenerations) && !bAtSolution && (0 == _kbhit());
 generation++)
 {
 for (candidate=0; candidate < nPop; candidate++)
 {
 (this->*calcTrialSolution)(candidate);
 trialEnergy = EnergyFunction(trialSolution,bAtSolution);

 if (trialEnergy < popEnergy[candidate])
 {
 // New low for this candidate
 popEnergy[candidate] = trialEnergy;
 CopyVector(RowVector(population,candidate),trialSolution);

 // Check if all-time low
 if (trialEnergy < bestEnergy)
 {
 bestEnergy = trialEnergy;
 CopyVector(bestSolution,trialSolution);
 }
 }
 }

 if ((generation % generationsPerLoop) == (generationsPerLoop - 1))
 {
 printf("Gens %u Cost %.15g\n", generation+1, Energy());
 }
 }

 if (0 != _kbhit())
 {
 _getch();
 }

 generations = generation;
 return(bAtSolution);
}

void DESolver::Best1Exp(int candidate)
{
 int r1, r2;
 int n;

 SelectSamples(candidate,&r1,&r2);
 n = (int)RandomUniform(0.0,(double)nDim);

 CopyVector(trialSolution,RowVector(population,candidate));
 for (int i=0; (RandomUniform(0.0,1.0) < probability) && (i < nDim); i++)
 {
 trialSolution[n] = bestSolution[n]
 + scale * (Element(population,r1,n)
 - Element(population,r2,n));
 n = (n + 1) % nDim;
 }

 return;
}

void DESolver::Rand1Exp(int candidate)
{
 int r1, r2, r3;
 int n;

 SelectSamples(candidate,&r1,&r2,&r3);
 n = (int)RandomUniform(0.0,(double)nDim);

 CopyVector(trialSolution,RowVector(population,candidate));
 for (int i=0; (RandomUniform(0.0,1.0) < probability) && (i < nDim); i++)
 {
 trialSolution[n] = Element(population,r1,n)
 + scale * (Element(population,r2,n)
 - Element(population,r3,n));
 n = (n + 1) % nDim;
 }

 return;
}

void DESolver::RandToBest1Exp(int candidate)
{
 int r1, r2;
 int n;

 SelectSamples(candidate,&r1,&r2);
 n = (int)RandomUniform(0.0,(double)nDim);

 CopyVector(trialSolution,RowVector(population,candidate));
 for (int i=0; (RandomUniform(0.0,1.0) < probability) && (i < nDim); i++)
 {
 trialSolution[n] += scale * (bestSolution[n] - trialSolution[n])
 + scale * (Element(population,r1,n)
 - Element(population,r2,n));
 n = (n + 1) % nDim;
 }

 return;
}

void DESolver::Best2Exp(int candidate)
{
 int r1, r2, r3, r4;
 int n;

 SelectSamples(candidate,&r1,&r2,&r3,&r4);
 n = (int)RandomUniform(0.0,(double)nDim);

 CopyVector(trialSolution,RowVector(population,candidate));
 for (int i=0; (RandomUniform(0.0,1.0) < probability) && (i < nDim); i++)
 {
 trialSolution[n] = bestSolution[n] +
 scale * (Element(population,r1,n)
 + Element(population,r2,n)
 - Element(population,r3,n)
 - Element(population,r4,n));
 n = (n + 1) % nDim;
 }

 return;
}

void DESolver::Rand2Exp(int candidate)
{
 int r1, r2, r3, r4, r5;
 int n;

 SelectSamples(candidate,&r1,&r2,&r3,&r4,&r5);
 n = (int)RandomUniform(0.0,(double)nDim);

 CopyVector(trialSolution,RowVector(population,candidate));
 for (int i=0; (RandomUniform(0.0,1.0) < probability) && (i < nDim); i++)
 {
 trialSolution[n] = Element(population,r1,n)
 + scale * (Element(population,r2,n)
 + Element(population,r3,n)
 - Element(population,r4,n)
 - Element(population,r5,n));
 n = (n + 1) % nDim;
 }

 return;
}

void DESolver::Best1Bin(int candidate)
{
 int r1, r2;
 int n;

 SelectSamples(candidate,&r1,&r2);
 n = (int)RandomUniform(0.0,(double)nDim);

 CopyVector(trialSolution,RowVector(population,candidate));
 for (int i=0; i < nDim; i++)
 {
 if ((RandomUniform(0.0,1.0) < probability) || (i == (nDim - 1)))
 trialSolution[n] = bestSolution[n]
 + scale * (Element(population,r1,n)
 - Element(population,r2,n));
 n = (n + 1) % nDim;
 }

 return;
}

void DESolver::Rand1Bin(int candidate)
{
 int r1, r2, r3;
 int n;

 SelectSamples(candidate,&r1,&r2,&r3);
 n = (int)RandomUniform(0.0,(double)nDim);

 CopyVector(trialSolution,RowVector(population,candidate));
 for (int i=0; i < nDim; i++)
 {
 if ((RandomUniform(0.0,1.0) < probability) || (i == (nDim - 1)))
 trialSolution[n] = Element(population,r1,n)
 + scale * (Element(population,r2,n)
 - Element(population,r3,n));
 n = (n + 1) % nDim;
 }

 return;
}

void DESolver::RandToBest1Bin(int candidate)
{
 int r1, r2;
 int n;

 SelectSamples(candidate,&r1,&r2);
 n = (int)RandomUniform(0.0,(double)nDim);

 CopyVector(trialSolution,RowVector(population,candidate));
 for (int i=0; i < nDim; i++)
 {
 if ((RandomUniform(0.0,1.0) < probability) || (i == (nDim - 1)))
 trialSolution[n] += scale * (bestSolution[n] - trialSolution[n])
 + scale * (Element(population,r1,n)
 - Element(population,r2,n));
 n = (n + 1) % nDim;
 }

 return;
}

void DESolver::Best2Bin(int candidate)
{
 int r1, r2, r3, r4;
 int n;

 SelectSamples(candidate,&r1,&r2,&r3,&r4);
 n = (int)RandomUniform(0.0,(double)nDim);

 CopyVector(trialSolution,RowVector(population,candidate));
 for (int i=0; i < nDim; i++)
 {
 if ((RandomUniform(0.0,1.0) < probability) || (i == (nDim - 1)))
 trialSolution[n] = bestSolution[n]
 + scale * (Element(population,r1,n)
 + Element(population,r2,n)
 - Element(population,r3,n)
 - Element(population,r4,n));
 n = (n + 1) % nDim;
 }

 return;
}

void DESolver::Rand2Bin(int candidate)
{
 int r1, r2, r3, r4, r5;
 int n;

 SelectSamples(candidate,&r1,&r2,&r3,&r4,&r5);
 n = (int)RandomUniform(0.0,(double)nDim);

 CopyVector(trialSolution,RowVector(population,candidate));
 for (int i=0; i < nDim; i++)
 {
 if ((RandomUniform(0.0,1.0) < probability) || (i == (nDim - 1)))
 trialSolution[n] = Element(population,r1,n)
 + scale * (Element(population,r2,n)
 + Element(population,r3,n)
 - Element(population,r4,n)
 - Element(population,r5,n));
 n = (n + 1) % nDim;
 }

 return;
}

void DESolver::SelectSamples(int candidate,int *r1,int *r2,
 int *r3,int *r4,int *r5)
{
 if (r1)
 {
 do
 {
 *r1 = (int)RandomUniform(0.0,(double)nPop);
 }
 while (*r1 == candidate);
 }

 if (r2)
 {
 do
 {
 *r2 = (int)RandomUniform(0.0,(double)nPop);
 }
 while ((*r2 == candidate) || (*r2 == *r1));
 }

 if (r3)
 {
 do
 {
 *r3 = (int)RandomUniform(0.0,(double)nPop);
 }
 while ((*r3 == candidate) || (*r3 == *r2) || (*r3 == *r1));
 }

 if (r4)
 {
 do
 {
 *r4 = (int)RandomUniform(0.0,(double)nPop);
 }
 while ((*r4 == candidate) || (*r4 == *r3) || (*r4 == *r2) || (*r4 == *r1));
 }

 if (r5)
 {
 do
 {
 *r5 = (int)RandomUniform(0.0,(double)nPop);
 }
 while ((*r5 == candidate) || (*r5 == *r4) || (*r5 == *r3)
 || (*r5 == *r2) || (*r5 == *r1));
 }

 return;
}

/*------Constants for RandomUniform()---------------------------------------*/
#define SEED 3
#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define IQ2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)

double DESolver::RandomUniform(double minValue,double maxValue)
{
 long j;
 long k;
 static long idum;
 static long idum2=123456789;
 static long iy=0;
 static long iv[NTAB];
 double result;

 if (iy == 0)
 idum = SEED;

 if (idum <= 0)
 {
 if (-idum < 1)
 idum = 1;
 else
 idum = -idum;

 idum2 = idum;

 for (j=NTAB+7; j>=0; j--)
 {
 k = idum / IQ1;
 idum = IA1 * (idum - k*IQ1) - k*IR1;
 if (idum < 0) idum += IM1;
 if (j < NTAB) iv[j] = idum;
 }

 iy = iv[0];
 }

 k = idum / IQ1;
 idum = IA1 * (idum - k*IQ1) - k*IR1;

 if (idum < 0)
 idum += IM1;

 k = idum2 / IQ2;
 idum2 = IA2 * (idum2 - k*IQ2) - k*IR2;

 if (idum2 < 0)
 idum2 += IM2;

 j = iy / NDIV;
 iy = iv[j] - idum2;
 iv[j] = idum;

 if (iy < 1)
 iy += IMM1;

 result = AM * iy;

 if (result > RNMX)
 result = RNMX;

 result = minValue + result * (maxValue - minValue);
 return(result);
}

// END FIRST FILE

// BEGIN SECOND FILE: DESolver.h
// Differential Evolution Solver Class
// Based on algorithms developed by Dr. Rainer Storn & Kenneth Price
// Written By: Lester E. Godwin
// PushCorp, Inc.
// Dallas, Texas
// 972-840-0208 x102
// godwin@pushcorp.com
// Created: 6/8/98
// Last Modified: 6/8/98
// Revision: 1.0

#if !defined(_DESOLVER_H)
#define _DESOLVER_H

#define stBest1Exp 0
#define stRand1Exp 1
#define stRandToBest1Exp 2
#define stBest2Exp 3
#define stRand2Exp 4
#define stBest1Bin 5
#define stRand1Bin 6
#define stRandToBest1Bin 7
#define stBest2Bin 8
#define stRand2Bin 9

class DESolver;

typedef void (DESolver::*StrategyFunction)(int);

class DESolver
{
public:
 DESolver(int dim,int popSize);
 ~DESolver(void);

 // Setup() must be called before solve to set min, max, strategy etc.
 void Setup(double min[],double max[],int deStrategy,
 double diffScale,double crossoverProb);

 // Solve() returns true if EnergyFunction() returns true.
 // Otherwise it runs maxGenerations generations and returns false.
 virtual bool Solve(int maxGenerations);

 // EnergyFunction must be overridden for problem to solve
 // testSolution[] is nDim array for a candidate solution
 // setting bAtSolution = true indicates solution is found
 // and Solve() immediately returns true.
 virtual double EnergyFunction(double testSolution[],bool &bAtSolution) = 0;

 int Dimension(void) { return(nDim); }
 int Population(void) { return(nPop); }

 // Call these functions after Solve() to get results.
 double Energy(void) { return(bestEnergy); }
 double *Solution(void) { return(bestSolution); }

 int Generations(void) { return(generations); }

protected:
 void SelectSamples(int candidate,int *r1,int *r2=0,int *r3=0,
 int *r4=0,int *r5=0);
 double RandomUniform(double min,double max);

 int nDim;
 int nPop;
 int generations;

 int strategy;
 StrategyFunction calcTrialSolution;
 double scale;
 double probability;

 double trialEnergy;
 double bestEnergy;

 double *trialSolution;
 double *bestSolution;
 double *popEnergy;
 double *population;

private:
 void Best1Exp(int candidate);
 void Rand1Exp(int candidate);
 void RandToBest1Exp(int candidate);
 void Best2Exp(int candidate);
 void Rand2Exp(int candidate);
 void Best1Bin(int candidate);
 void Rand1Bin(int candidate);
 void RandToBest1Bin(int candidate);
 void Best2Bin(int candidate);
 void Rand2Bin(int candidate);
};

// I added the following stuff 19 March 2007
// Brent Lehman

struct ASpectrum
{
 unsigned mNumValues;
 double* mReals;
 double* mImags;
};

bool ComputeSpectrum(double* evenZeros, unsigned numEvenZeros, double* oddZero,
 double* evenPoles, unsigned numEvenPoles, double* oddPole,
 double gain, ASpectrum* spectrum);

class FilterSolver : public DESolver
{
public:
 FilterSolver(int dim, int popSize, int spectrumSize,
 unsigned numZeros, unsigned numPoles, bool minimumPhase) :
 DESolver(dim, popSize)
 {
 mSpectrum.mNumValues = spectrumSize;
 mSpectrum.mReals = new double[spectrumSize];
 mSpectrum.mImags = new double[spectrumSize];
 mNumZeros = numZeros;
 mNumPoles = numPoles;
 mMinimumPhase = minimumPhase;
 }
 virtual ~FilterSolver()
 {
 delete[] mSpectrum.mReals;
 delete[] mSpectrum.mImags;
 }
 virtual double EnergyFunction(double testSolution[], bool& bAtSolution);
 virtual ASpectrum* Spectrum() {return &mSpectrum;}
private:
 unsigned mNumZeros;
 unsigned mNumPoles;
 bool mMinimumPhase;
 ASpectrum mSpectrum;
};

#endif // _DESOLVER_H

// END SECOND FILE DESolver.h

// BEGIN FINAL FILE: FilterDesign.cpp
/*
 *
 * Filter Design Utility
 * Source
 *
 * Brent Lehman
 * 16 March 2007
 *
 *
 */

//
// //
// The idea is that an optimization algorithm passes a bunch of //
// different filter specifications to the function //
// "EnergyFunction" below. That function is supposed to //
// compute an "error" or "cost" value for each specification //
// it receives, which the algorithm uses to decide on other //
// filter specifications to try. Over the course of several //
// thousand different specifications, the algorithm will //
// eventually converge on a single best one. This one has the //
// lowest error value of all possible specifications. Thus, //
// you effectively tell the optimization algorithm what it's //
// looking for through code that you put into EnergyFunction. //
// //
// Look for a note in the code like this one to see what part //
// you need to change for your own uses. //
// //
//

#include <stdlib.h>
#include <stdio.h>
#include <memory.h>
#include <conio.h>
#include <math.h>
#include <time.h>
#include "DESolver.h"

#define kIntIsOdd(x) (((x) & 0x00000001) == 1)

double FilterSolver::EnergyFunction(double testSolution[], bool& bAtSolution)
{
 unsigned i;
 double tempReal;
 double tempImag;

 // You probably will want to keep this if statement and its contents
 if (mMinimumPhase)
 {
 // Make sure there are no zeros outside the unit circle
 unsigned lastEvenZero = (mNumZeros & 0xfffffffe) - 1;
 for (i = 0; i <= lastEvenZero; i+=2)
 {
 tempReal = testSolution[i];
 tempImag = testSolution[i+1];
 if ((tempReal*tempReal + tempImag*tempImag) > 1.0)
 {
 return 1.0e+300;
 }
 }

 if (kIntIsOdd(mNumZeros))
 {
 tempReal = testSolution[mNumZeros - 1];
 if ((tempReal * tempReal) > 1.0)
 {
 return 1.0e+300;
 }
 }
 }

 // Make sure there are no poles on or outside the unit circle
 // You probably will want to keep this too
 unsigned lastEvenPole = mNumZeros + (mNumPoles & 0xfffffffe) - 2;
 for (i = mNumZeros; i <= lastEvenPole; i+=2)
 {
 tempReal = testSolution[i];
 tempImag = testSolution[i+1];
 if ((tempReal*tempReal + tempImag*tempImag) > 0.999999999)
 {
 return 1.0e+300;
 }
 }

 // If you keep the for loop above, keep this too
 if (kIntIsOdd(mNumPoles))
 {
 tempReal = testSolution[mNumZeros + mNumPoles - 1];
 if ((tempReal * tempReal) > 1.0)
 {
 return 1.0e+300;
 }
 }

 double* evenZeros = &(testSolution[0]);
 double* evenPoles = &(testSolution[mNumZeros]);
 double* oddZero = NULL;
 double* oddPole = NULL;
 double gain = testSolution[mNumZeros + mNumPoles];

 if (kIntIsOdd(mNumZeros))
 {
 oddZero = &(testSolution[mNumZeros - 1]);
 }

 if (kIntIsOdd(mNumPoles))
 {
 oddPole = &(testSolution[mNumZeros + mNumPoles - 1]);
 }

 ComputeSpectrum(evenZeros, mNumZeros & 0xfffffffe, oddZero,
 evenPoles, mNumPoles & 0xfffffffe, oddPole,
 gain, &mSpectrum);

 unsigned numPoints = mSpectrum.mNumValues;

///
// //
// Use the impulse response, held in the variable //
// "mSpectrum", to compute a score for the solution that //
// has been passed into this function. You probably don't //
// want to touch any of the code above this point, but //
// from here to the end of this function, it's all you! //
// //
///

 #define kLnTwoToThe127 88.02969193111305
 #define kRecipLn10 0.4342944819032518

 // Compute square sum of errors for magnitude
 double magnitudeError = 0.0;
 double magnitude = 0.0;
 double logMagnitude = 0.0;
 tempReal = mSpectrum.mReals[0];
 tempImag = mSpectrum.mImags[0];
 magnitude = tempReal*tempReal + tempImag*tempImag;
 double baseMagnitude = 0.0;
 if (0.0 == magnitude)
 {
 baseMagnitude = -kLnTwoToThe127;
 }
 else
 {
 baseMagnitude = log(magnitude) * kRecipLn10;
 baseMagnitude *= 0.5;
 }

 for (i = 0; i < numPoints; i++)
 {
 tempReal = mSpectrum.mReals[i];
 tempImag = mSpectrum.mImags[i];
 magnitude = tempReal*tempReal + tempImag*tempImag;
 if (0.0 == magnitude)
 {
 logMagnitude = -kLnTwoToThe127;
 }
 else
 {
 logMagnitude = log(magnitude) * kRecipLn10;
 logMagnitude *= 0.5; // Half the log because it's mag squared
 }

 logMagnitude -= baseMagnitude;
 magnitudeError += logMagnitude * logMagnitude;
 }

 // Compute errors for phase
 double phaseError = 0.0;
 double phase = 0.0;
 double componentError = 0.0;
 double degree = 1;//((mNumZeros + 1) & 0xfffffffe) - 1;
 double angleSpacing = -3.141592653589793 * 0.5 / numPoints * degree;
 double targetPhase = 0.0;
 double oldPhase = 0.0;
 double phaseDifference = 0;
 double totalPhaseTraversal = 0.0;
 double traversalError = 0.0;
 for (i = 0; i < (numPoints - 5); i++)
 {
 tempReal = mSpectrum.mReals[i];
 tempImag = mSpectrum.mImags[i];
 oldPhase = phase;
 phase = atan2(tempImag, tempReal);
 phaseDifference = phase - oldPhase;
 if (phaseDifference > 3.141592653589793)
 {
 phaseDifference -= 3.141592653589793;
 phaseDifference -= 3.141592653589793;
 }
 else if (phaseDifference < -3.141592653589793)
 {
 phaseDifference += 3.141592653589793;
 phaseDifference += 3.141592653589793;
 }
 totalPhaseTraversal += phaseDifference;
 componentError = cosh(200.0*(phaseDifference - angleSpacing)) - 0.5;
 phaseError += componentError * componentError;
 targetPhase += angleSpacing;
 if (targetPhase < -3.141592653589793)
 {
 targetPhase += 3.141592653589793;
 targetPhase += 3.141592653589793;
 }
 }

 traversalError = totalPhaseTraversal - angleSpacing * numPoints;
 traversalError *= traversalError;

 double baseMagnitudeError = baseMagnitude * baseMagnitude;

 // Compute weighted sum of the two subtotals
 // Take square root
 return sqrt(baseMagnitudeError*1.0 + magnitudeError*100.0 +
 phaseError*400.0 + traversalError*4000000.0);
}

///////////////////////////////
int main(int argc, char** argv)
{
 srand((unsigned)time(NULL));

 unsigned numZeros;
 unsigned numPoles;
 bool minimumPhase;

 if (argc < 4)
 {
 printf("Usage: FilterDesign.exe <minimumPhase?> <numZeros> <numPoles>\n");
 return 0;
 }
 else
 {
 if (0 == atoi(argv[1]))
 {
 minimumPhase = false;
 }
 else
 {
 minimumPhase = true;
 }

 numZeros = (unsigned)atoi(argv[2]);
 if (0 == numZeros)
 {
 numZeros = 1;
 }

 numPoles = (unsigned)atoi(argv[3]);
 }

 unsigned vectorLength = numZeros + numPoles + 1;
 unsigned populationSize = vectorLength * 10;
 FilterSolver theSolver(vectorLength, populationSize, 200,
 numZeros, numPoles, minimumPhase);

 double* minimumSolution = new double[vectorLength];
 unsigned i;
 if (minimumPhase)
 {
 for (i = 0; i < numZeros; i++)
 {
 minimumSolution[i] = -sqrt(0.5);
 }
 }
 else
 {
 for (i = 0; i < numZeros; i++)
 {
 minimumSolution[i] = -10.0;
 }
 }

 for (; i < (vectorLength - 1); i++)
 {
 minimumSolution[i] = -sqrt(0.5);
 }

 minimumSolution[vectorLength - 1] = 0.0;

 double* maximumSolution = new double[vectorLength];
 if (minimumPhase)
 {
 for (i = 0; i < numZeros; i++)
 {
 maximumSolution[i] = sqrt(0.5);
 }
 }
 else
 {
 for (i = 0; i < numZeros; i++)
 {
 maximumSolution[i] = 10.0;
 }
 }

 for (i = 0; i < (vectorLength - 1); i++)
 {
 maximumSolution[i] = sqrt(0.5);
 }

 maximumSolution[vectorLength - 1] = 2.0;

 theSolver.Setup(minimumSolution, maximumSolution, 0, 0.5, 0.75);
 theSolver.Solve(1000000);

 double* bestSolution = theSolver.Solution();
 printf("\nZeros:\n");
 unsigned numEvenZeros = numZeros & 0xfffffffe;
 for (i = 0; i < numEvenZeros; i+=2)
 {
 printf("%.10f +/- %.10fi\n", bestSolution[i], bestSolution[i+1]);
 }

 if (kIntIsOdd(numZeros))
 {
 printf("%.10f\n", bestSolution[numZeros-1]);
 }

 printf("Poles:\n");
 unsigned lastEvenPole = numZeros + (numPoles & 0xfffffffe) - 2;
 for (i = numZeros; i <= lastEvenPole; i+=2)
 {
 printf("%.10f +/- %.10fi\n", bestSolution[i], bestSolution[i+1]);
 }

 unsigned numRoots = numZeros + numPoles;
 if (kIntIsOdd(numPoles))
 {
 printf("%.10f\n", bestSolution[numRoots-1]);
 }

 double gain = bestSolution[numRoots];
 printf("Gain: %.10f\n", gain);

 _getch();
 unsigned j;
 ASpectrum* spectrum = theSolver.Spectrum();
 double logMagnitude;
 printf("Magnitude Response, millibels:\n");
 for (i = 0; i < 20; i++)
 {
 for (j = 0; j < 10; j++)
 {
 logMagnitude = kRecipLn10 *
 log(spectrum->mReals[i*10 + j] * spectrum->mReals[i*10 + j] +
 spectrum->mImags[i*10 + j] * spectrum->mImags[i*10 + j]);
 if (logMagnitude < -9.999)
 {
 logMagnitude = -9.999;
 }
 printf("%+5.0f ", logMagnitude*1000);
 }
 printf("\n");
 }

 _getch();
 double phase;
 printf("Phase Response, milliradians:\n");
 for (i = 0; i < 20; i++)
 {
 for (j = 0; j < 10; j++)
 {
 phase = atan2(spectrum->mImags[i*10 + j], spectrum->mReals[i*10 + j]);
 printf("%+5.0f ", phase*1000);
 }
 printf("\n");
 }

 _getch();
 printf("Biquad Sections:\n");
 unsigned numBiquadSections =
 (numZeros > numPoles) ? ((numZeros + 1) >> 1) : ((numPoles + 1) >> 1);
 double x0, x1, x2;
 double y0, y1, y2;
 if (numZeros >=2)
 {
 x0 = (bestSolution[0]*bestSolution[0] + bestSolution[1]*bestSolution[1]) *
 gain;
 x1 = 2.0 * bestSolution[0] * gain;
 x2 = gain;
 }
 else if (1 == numZeros)
 {
 x0 = bestSolution[0] * gain;
 x1 = gain;
 x2 = 0.0;
 }
 else
 {
 x0 = gain;
 x1 = 0.0;
 x2 = 0.0;
 }

 if (numPoles >= 2)
 {
 y0 = (bestSolution[numZeros]*bestSolution[numZeros] +
 bestSolution[numZeros+1]*bestSolution[numZeros+1]);
 y1 = 2.0 * bestSolution[numZeros];
 y2 = 1.0;
 }
 else if (1 == numPoles)
 {
 y0 = bestSolution[numZeros];
 y1 = 1.0;
 y2 = 0.0;
 }
 else
 {
 y0 = 1.0;
 y1 = 0.0;
 y2 = 0.0;
 }

 x0 /= y0;
 x1 /= y0;
 x2 /= y0;
 y1 /= y0;
 y2 /= y0;

 printf("y[n] = %.10fx[n]", x0);
 if (numZeros > 0)
 {
 printf(" + %.10fx[n-1]", x1);
 }
 if (numZeros > 1)
 {
 printf(" + %.10fx[n-2]", x2);
 }
 printf("\n");

 if (numPoles > 0)
 {
 printf(" + %.10fy[n-1]", y1);
 }
 if (numPoles > 1)
 {
 printf(" + &.10fy[n-2]", y2);
 }
 if (numPoles > 0)
 {
 printf("\n");
 }

 int numRemainingZeros = numZeros - 2;
 int numRemainingPoles = numPoles - 2;
 for (i = 1; i < numBiquadSections; i++)
 {
 if (numRemainingZeros >= 2)
 {
 x0 = (bestSolution[i*2] * bestSolution[i*2] +
 bestSolution[i*2+1] * bestSolution[i*2+1]);
 x1 = -2.0 * bestSolution[i*2];
 x2 = 1.0;
 }
 else if (numRemainingZeros >= 1)
 {
 x0 = bestSolution[i*2];
 x1 = 1.0;
 x2 = 0.0;
 }
 else
 {
 x0 = 1.0;
 x1 = 0.0;
 x2 = 0.0;
 }

 if (numRemainingPoles >= 2)
 {
 y0 = (bestSolution[i*2+numZeros] * bestSolution[i*2+numZeros] +
 bestSolution[i*2+numZeros+1] * bestSolution[i*2+numZeros+1]);
 y1 = -2.0 * bestSolution[i*2+numZeros];
 y2 = 1.0;
 }
 else if (numRemainingPoles >= 1)
 {
 y0 = bestSolution[i*2+numZeros];
 y1 = 1.0;
 y2 = 0.0;
 }
 else
 {
 y0 = 1.0;
 y1 = 0.0;
 y2 = 0.0;
 }

 x0 /= y0;
 x1 /= y0;
 x2 /= y0;
 y1 /= y0;
 y2 /= y0;

 printf("y[n] = %.10fx[n]", x0);
 if (numRemainingZeros > 0)
 {
 printf(" + %.10fx[n-1]", x1);
 }
 if (numRemainingZeros > 1)
 {
 printf(" + %.10fx[n-2]", x2);
 }
 printf("\n");

 if (numRemainingPoles > 0)
 {
 printf(" + %.10fy[n-1]", -y1);
 }
 if (numRemainingPoles > 1)
 {
 printf(" + %.10fy[n-2]", -y2);
 }
 if (numRemainingPoles > 0)
 {
 printf("\n");
 }

 numRemainingZeros -= 2;
 numRemainingPoles -= 2;
 }

 _getch();
 printf("Full Expansion:\n");
 double* xpolynomial = new double[numRoots + 1];
 memset(xpolynomial, 0, sizeof(double) * (numRoots + 1));
 xpolynomial[0] = 1.0;
 if (numZeros >= 2)
 {
 xpolynomial[0] = bestSolution[0] * bestSolution[0] +
 bestSolution[1] * bestSolution[1];
 xpolynomial[1] = -2.0 * bestSolution[0];
 xpolynomial[2] = 1.0;
 }
 else if (numZeros == 1)
 {
 xpolynomial[0] = bestSolution[0];
 xpolynomial[1] = 1.0;
 }
 else
 {
 xpolynomial[0] = 1.0;
 }

 for (i = 2, numRemainingZeros = numZeros; numRemainingZeros >= 2;
 i += 2, numRemainingZeros-=2)
 {
 x2 = 1.0;
 x1 = -2.0 * bestSolution[i];
 x0 = bestSolution[i] * bestSolution[i] +
 bestSolution[i+1] * bestSolution[i+1];
 for (j = numRoots; j > 1; j--)
 {
 xpolynomial[j] = xpolynomial[j-2] + xpolynomial[j-1] * x1 +
 xpolynomial[j] * x0;
 }
 xpolynomial[1] = xpolynomial[0] * x1 + xpolynomial[1] * x0;
 xpolynomial[0] *= x0;
 }

 if (numRemainingZeros > 0)
 {
 x1 = 1.0;
 x0 = bestSolution[numZeros-1];
 for (j = numRoots; j > 0; j--)
 {
 xpolynomial[j] = xpolynomial[j-1] + xpolynomial[j] * x0;
 }
 xpolynomial[0] *= x0;
 }

 double* ypolynomial = new double[numRoots + 1];
 memset(ypolynomial, 0, sizeof(double) * (numRoots + 1));
 ypolynomial[0] = 1.0;
 if (numPoles >= 2)
 {
 ypolynomial[0] = bestSolution[numZeros] * bestSolution[numZeros] +
 bestSolution[numZeros+1] * bestSolution[numZeros+1];
 ypolynomial[1] = -2.0 * bestSolution[numZeros];
 ypolynomial[2] = 1.0;
 }
 else if (numPoles == 1)
 {
 ypolynomial[0] = bestSolution[numZeros];
 ypolynomial[1] = 1.0;
 }
 else
 {
 xpolynomial[0] = 1.0;
 }

 for (i = 2, numRemainingPoles = numPoles; numRemainingPoles >= 2;
 i += 2, numRemainingPoles-=2)
 {
 y2 = 1.0;
 y1 = -2.0 * bestSolution[numZeros+i];
 y0 = bestSolution[numZeros+i] * bestSolution[numZeros+i] +
 bestSolution[numZeros+i+1] * bestSolution[numZeros+i+1];
 for (j = numRoots; j > 1; j--)
 {
 ypolynomial[j] = ypolynomial[j-2] + ypolynomial[j-1] * y1 +
 ypolynomial[j] * y0;
 }
 ypolynomial[1] = ypolynomial[0] * y1 + ypolynomial[1] * y0;
 ypolynomial[0] *= y0;
 }

 if (numRemainingPoles > 0)
 {
 y1 = 1.0;
 y0 = bestSolution[numZeros+numPoles-1];
 for (j = numRoots; j > 0; j--)
 {
 ypolynomial[j] = ypolynomial[j-1] + ypolynomial[j] * y0;
 }
 ypolynomial[0] *= y0;
 }

 y0 = ypolynomial[0];
 for (i = 0; i <= numRoots; i++)
 {
 xpolynomial[i] /= y0;
 ypolynomial[i] /= y0;
 }

 printf("y[n] = %.10fx[n]", xpolynomial[0]*gain);
 for (i = 1; i <= numZeros; i++)
 {
 printf(" + %.10fx[n-%d]", xpolynomial[i]*gain, i);
 if ((i % 3) == 2)
 {
 printf("\n");
 }
 }

 if ((i % 3) != 0)
 {
 printf("\n");
 }

 if (numPoles > 0)
 {
 printf(" ");
 }

 for (i = 1; i <= numPoles; i++)
 {
 printf(" + %.10fy[n-%d]", -ypolynomial[i], i);
 if ((i % 3) == 2)
 {
 printf("\n");
 }
 }

 if ((i % 3) != 0)
 {
 printf("\n");
 }

 delete[] minimumSolution;
 delete[] maximumSolution;
 delete[] xpolynomial;
 delete[] ypolynomial;
}

bool ComputeSpectrum(double* evenZeros, unsigned numEvenZeros, double* oddZero,
 double* evenPoles, unsigned numEvenPoles, double* oddPole,
 double gain, ASpectrum* spectrum)
{
 unsigned i, j;

 // For equally spaced points on the unit circle
 unsigned numPoints = spectrum->mNumValues;
 double spacingAngle = 3.141592653589793 / (numPoints - 1);
 double pointArgument = 0.0;
 double pointReal = 0.0;
 double pointImag = 0.0;
 double rootReal = 0.0;
 double rootImag = 0.0;
 double differenceReal = 0.0;
 double differenceImag = 0.0;
 double responseReal = 1.0;
 double responseImag = 0.0;
 double recipSquareMagnitude = 0.0;
 double recipReal = 0.0;
 double recipImag = 0.0;
 double tempRealReal = 0.0;
 double tempRealImag = 0.0;
 double tempImagReal = 0.0;
 double tempImagImag = 0.0;

 for (i = 0; i < numPoints; i++)
 {
 responseReal = 1.0;
 responseImag = 0.0;

 // The imaginary component is negated because we're using 1/z, not z
 pointReal = cos(pointArgument);
 pointImag = -sin(pointArgument);

 // For each even zero
 for (j = 0; j < numEvenZeros; j+=2)
 {
 rootReal = evenZeros[j];
 rootImag = evenZeros[j + 1];
 // Compute distance from that zero to that point
 differenceReal = pointReal - rootReal;
 differenceImag = pointImag - rootImag;
 // Multiply that distance by the accumulating product
 tempRealReal = responseReal * differenceReal;
 tempRealImag = responseReal * differenceImag;
 tempImagReal = responseImag * differenceReal;
 tempImagImag = responseImag * differenceImag;
 responseReal = tempRealReal - tempImagImag;
 responseImag = tempRealImag + tempImagReal;
 // Do the same with the conjugate root
 differenceImag = pointImag + rootImag;
 tempRealReal = responseReal * differenceReal;
 tempRealImag = responseReal * differenceImag;
 tempImagReal = responseImag * differenceReal;
 tempImagImag = responseImag * differenceImag;
 responseReal = tempRealReal - tempImagImag;
 responseImag = tempRealImag + tempImagReal;
 // The following way is little faster, if any
 // response *= (1/z - r) * (1/z - conj(r))
 // *= r*conj(r) - (r + conj(r))/z + 1/(z*z)
 // *= real(r)*real(r) + imag(r)*imag(r) - 2*real(r)/z + 1/(z*z)
 // *= ... - 2*real(r)*conj(z) + conj(z)*conj(z)
 // *= ... - 2*real(r)*real(z) + 2i*real(r)*imag(z) +
 // real(z)*real(z) - 2i*real(z)*imag(z) + imag(z)*imag(z)
 // *= real(r)*real(r) + imag(r)*imag(r) - 2*real(r)*real(z) +
 // real(z)*real(z) + imag(z)*imag(z) +
 // 2i * imag(z) * (real(r) - real(z))
 // *= (real(r) - real(z))^2 + imag(r)^2 + imag(z)^2 +
 // 2i * imag(z) * (real(r) - real(z))
 // This ends up being 8 multiplications, 6 additions
 }

 if (NULL != oddZero)
 {
 rootReal = *oddZero;
 // Compute distance from that zero to that point
 differenceReal = pointReal - rootReal;
 differenceImag = pointImag;
 // Multiply that distance by the accumulating product
 tempRealReal = responseReal * differenceReal;
 tempRealImag = responseReal * differenceImag;
 tempImagReal = responseImag * differenceReal;
 tempImagImag = responseImag * differenceImag;
 responseReal = tempRealReal - tempImagImag;
 responseImag = tempRealImag + tempImagReal;
 }

 // For each pole
 for (j = 0; j < numEvenPoles; j+=2)
 {
 rootReal = evenPoles[j];
 rootImag = evenPoles[j + 1];
 // Compute distance from that pole to that point
 differenceReal = pointReal - rootReal;
 differenceImag = pointImag - rootImag;
 // Multiply the reciprocal of that distance by the accumulating product
 recipSquareMagnitude = 1.0 / (differenceReal * differenceReal +
 differenceImag * differenceImag);
 recipReal = differenceReal * recipSquareMagnitude;
 recipImag = -differenceImag * recipSquareMagnitude;
 tempRealReal = responseReal * recipReal;
 tempRealImag = responseReal * recipImag;
 tempImagReal = responseImag * recipReal;
 tempImagImag = responseImag * recipImag;
 responseReal = tempRealReal - tempImagImag;
 responseImag = tempRealImag + tempImagReal;
 // Do the same with the conjugate root
 differenceImag = pointImag + rootImag;
 recipSquareMagnitude = 1.0 / (differenceReal * differenceReal +
 differenceImag * differenceImag);
 recipReal = differenceReal * recipSquareMagnitude;
 recipImag = -differenceImag * recipSquareMagnitude;
 tempRealReal = responseReal * recipReal;
 tempRealImag = responseReal * recipImag;
 tempImagReal = responseImag * recipReal;
 tempImagImag = responseImag * recipImag;
 responseReal = tempRealReal - tempImagImag;
 responseImag = tempRealImag + tempImagReal;
 }

 if (NULL != oddPole)
 {
 rootReal = *oddPole;
 // Compute distance from that point to that zero
 differenceReal = pointReal - rootReal;
 differenceImag = pointImag;
 // Multiply the reciprocal of that distance by the accumulating product
 recipSquareMagnitude = 1.0 / (differenceReal * differenceReal +
 differenceImag * differenceImag);
 recipReal = differenceReal * recipSquareMagnitude;
 recipImag = -differenceImag * recipSquareMagnitude;
 tempRealReal = responseReal * recipReal;
 tempRealImag = responseReal * recipImag;
 tempImagReal = responseImag * recipReal;
 tempImagImag = responseImag * recipImag;
 responseReal = tempRealReal - tempImagImag;
 responseImag = tempRealImag + tempImagReal;
 }

 // Multiply by the gain
 responseReal *= gain;
 responseImag *= gain;

 spectrum->mReals[i] = responseReal;
 spectrum->mImags[i] = responseImag;

 pointArgument += spacingAngle;
 }

 return true;
}

// Half-band lowpass
/*
 #define kLnTwoToThe127 88.02969193111305
 #define kRecipLn10 0.4342944819032518

 // Compute square sum of errors for bottom half band
 unsigned numLoBandPoints = numPoints >> 1;
 double loBandError = 0.0;
 double magnitude = 0.0;
 double logMagnitude = 0.0;
 for (i = 0; i < numLoBandPoints; i++)
 {
 tempReal = mSpectrum.mReals[i];
 tempImag = mSpectrum.mImags[i];
 magnitude = tempReal*tempReal + tempImag*tempImag;
 if (0.0 == magnitude)
 {
 logMagnitude = -kLnTwoToThe127;
 }
 else
 {
 logMagnitude = log(magnitude) * kRecipLn10;
 logMagnitude *= 0.5; // Half the log because it's mag squared
 }

 loBandError += logMagnitude * logMagnitude;
 }

 // Compute errors for top half of band
 double hiBandError = 0.0;
 for (; i < numPoints; i++)
 {
 tempReal = mSpectrum.mReals[i];
 tempImag = mSpectrum.mImags[i];
 magnitude = tempReal*tempReal + tempImag*tempImag;
 hiBandError += magnitude; // Already a squared value
 }

 // Compute weighted sum of the two subtotals
 // Take square root
 return sqrt(loBandError + 5000.0 * hiBandError);
*/

Prewarping

	Author or source: robert bristow-johnson (better known as “rbj”)

	Type: explanation

	Created: 2002-01-17 02:10:26

notes

prewarping is simply recognizing the warping that the BLT introduces.
to determine frequency response, we evaluate the digital H(z) at
z=exp(j*w*T) and we evaluate the analog Ha(s) at s=j*W . the following
will confirm the jw to unit circle mapping and will show exactly what the
mapping is (this is the same stuff in the textbooks):

the BLT says: s = (2/T) * (z-1)/(z+1)

substituting: s = j*W = (2/T) * (exp(j*w*T) - 1) / (exp(j*w*T) + 1)

j*W = (2/T) * (exp(j*w*T/2) - exp(-j*w*T/2)) / (exp(j*w*T/2) + exp(-j*w*T/2))

= (2/T) * (j*2*sin(w*T/2)) / (2*cos(w*T/2))

= j * (2/T) * tan(w*T/2)

or

analog W = (2/T) * tan(w*T/2)

so when the real input frequency is w, the digital filter will behave with
the same amplitude gain and phase shift as the analog filter will have at a
hypothetical frequency of W. as w*T approaches pi (Nyquist) the digital
filter behaves as the analog filter does as W -> inf. for each degree of
freedom that you have in your design equations, you can adjust the analog
design frequency to be just right so that when the deterministic BLT
warping does its thing, the resultant warped frequency comes out just
right. for a simple LPF, you have only one degree of freedom, the cutoff
frequency. you can precompensate it so that the true cutoff comes out
right but that is it, above the cutoff, you will see that the LPF dives
down to -inf dB faster than an equivalent analog at the same frequencies.

RBJ Audio-EQ-Cookbook

	Author or source: Robert Bristow-Johnson

	Type: EQ filter kookbook

	Created: 2005-05-04 20:31:18

	Linked files: Audio-EQ-Cookbook.txt.

notes

Equations for creating different equalization filters.
see linked file

Comments

	Date: 2006-08-30 22:14:22

	By: ude.odu@grebnesie.nitram

rbj writes with regard to shelving filters:

> _or_ S, a "shelf slope" parameter (for shelving EQ only). When S = 1,
> the shelf slope is as steep as it can be and remain monotonically
> increasing or decreasing gain with frequency. The shelf slope, in
> dB/octave, remains proportional to S for all other values for a
> fixed f0/Fs and dBgain.

The precise relation for both low and high shelf filters is

 S = -s * log_2(10)/40 * sin(w0)/w0 * (A^2+1)/(A^2-1)

where s is the true shelf midpoint slope in dB/oct and w0, A are defined in
the Cookbook just below the quoted paragraph. It's your responsibility to keep
the overshoots in check by using sensible s values. Also make sure that s has
the right sign -- negative for low boost or high cut, positive otherwise.

To find the relation I first differentiated the dB magnitude response of the
general transfer function in eq. 1 with regard to log frequency, inserted the
low shelf coefficient expressions, and evaluated at w0. Second, I equated this
derivative to s and solved for alpha. Third, I equated the result to rbj's
expression for alpha and solved for S yielding the above formula. Finally
I checked it with the high shelf filter.

	Date: 2006-08-31 17:08:27

	By: ude.odu@grebnesie.nitram

Sorry, a slight correction: rewrite the formula as

 S = s * log_2(10)/40 * sin(w0)/w0 * (A^2+1)/abs(A^2-1)

nad make s always positive.

	Date: 2013-10-05 18:06:20

	By: moc.liamg@56rekojbm

This is a very famous article. I saw many are asking what is the relationship between "Q" and the resonance in low-pass and hi-pass filters.

By experimenting, I found that Q should always be >= 1/2. Value < 1/2 seems to alter f0 "wherever it's happenin', man", cutting off frequencies not where it was planned. In fact Q = 1/2 is the value for which H(s) = 1 / (s^2 + s/Q + 1) gets two poles, real and coincident. In other words the filter becomes like two 1st order filters in cascade, with no resonance at all.

When Q tends to infinite the poles get close to the unit circle, the gain around the cutoff frequency increases, creating resonance.

RBJ Audio-EQ-Cookbook

	Author or source: Robert Bristow-Johnson

	Created: 2005-05-04 20:33:31

	Linked files: EQ-Coefficients.pdf.

notes

see attached file

Comments

	Date: 2005-05-14 06:35:17

	By: eb.tenyks@didid

Hi

In your most recent version, you write:

--
 alpha = sin(w0)/(2*Q) (case: Q)
 = sin(w0)*sinh(ln(2)/2 * BW * w0/sin(w0)) (case: BW)
 = sin(w0)/2 * sqrt((A + 1/A)*(1/S - 1) + 2) (case: S)
--

But the 'slope' case doesn't seem to work for me. It results in some kind of bad resonance at higher samplerates.

Now I found this 'beta' in an older version of your paper (I think), describing:

--
 beta = sqrt(A)/Q (for shelving EQ filters only)
 = sqrt(A)*sqrt[(A + 1/A)*(1/S - 1) + 2] (if shelf slope is specified)
 = sqrt[(A^2 + 1)/S - (A-1)^2]
--

..and here the
sqrt(A)*sqrt[(A + 1/A)*(1/S - 1) + 2]
formula works perfectly for me.

I must say I don't understand half of the theory, so it's probably my fault somewhere. But why the change in the newer version?

	Date: 2005-05-20 20:56:45

	By: moc.noitanigamioidua@jbr

>But why the change in the newer version?
--

i wanted to get rid of an extraneous intermediate variable and there was enough similarity between alpha and beta that i changed the lowShelf and highShelf coefficient equations to be in terms of alpha rather than beta.

i believe if you use the new version as shown, in terms of alpha (but remember the coef equations are changed accordingly from the old version), it will come up with the same coefficients given the same boost gain, Q (or S), and shelf frequency (and same Fs). lemme know if you still have trouble.

r b-j

Remez Exchange Algorithm (Parks/McClellan)

	Author or source: ed.luosfosruoivas@naitsirhC

	Type: Linear Phase FIR Filter

	Created: 2006-05-06 08:40:18

	Linked files: http://www.savioursofsoul.de/Christian/Remez.zip.

notes

Here is an object pascal / delphi translation of the Remez Exchange Algorithm by
Parks/McClellan
There is at least one small bug in it (compared to the C++ version), which causes the
result to be slightly different to the C version.

code

	1

	http://www.savioursofsoul.de/Christian/Remez.zip

Remez Remez (Parks/McClellan)

	Author or source: ed.luosfosruoivas@naitsirhC

	Type: FIR Remez (Parks/McClellan)

	Created: 2005-06-28 21:06:53

notes

Below you can find a Object Pascal / Delphi Translation of the Remez (Parks/McClellan) FIR
Filter Design algorithm.
It behaves slightly different from the c++ version, but the results work very well.

code

	1

	http://www.savioursofsoul.de/Christian/remez.zip

Resonant IIR lowpass (12dB/oct)

	Author or source: Olli Niemitalo

	Type: Resonant IIR lowpass (12dB/oct)

	Created: 2002-01-17 02:05:38

notes

Hard to calculate coefficients, easy to process algorithm

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	resofreq = pole frequency
amp = magnitude at pole frequency (approx)

double pi = 3.141592654;

/* Parameters. Change these! */
double resofreq = 5000;
double amp = 1.0;

DOUBLEWORD streamofs;
double w = 2.0*pi*resofreq/samplerate; // Pole angle
double q = 1.0-w/(2.0*(amp+0.5/(1.0+w))+w-2.0); // Pole magnitude
double r = q*q;
double c = r+1.0-2.0*cos(w)*q;
double vibrapos = 0;
double vibraspeed = 0;

/* Main loop */
for (streamofs = 0; streamofs < streamsize; streamofs++) {

 /* Accelerate vibra by signal-vibra, multiplied by lowpasscutoff */
 vibraspeed += (fromstream[streamofs] - vibrapos) * c;

 /* Add velocity to vibra's position */
 vibrapos += vibraspeed;

 /* Attenuate/amplify vibra's velocity by resonance */
 vibraspeed *= r;

 /* Check clipping */
 temp = vibrapos;
 if (temp > 32767) {
 temp = 32767;
 } else if (temp < -32768) temp = -32768;

 /* Store new value */
 tostream[streamofs] = temp;
}

Comments

	Date: 2002-05-05 08:59:19

	By: moc.ibtta@suocuar

This looks similar to the low-pass filter I used in FilterKing (http://home.attbi.com/~spaztek4/) Can you cruft up a high-pass example for me?

Thanks,
__e

	Date: 2006-05-18 17:01:21

	By: faster init

thank you! works nicely...
here a simplified init version for faster changes of the filter properties for amps = 1.0

void init(double resofreq)
{
static const double FAC = pi * 2.0 /samplerate;
double q, w;

w = FAC * resofreq;
q = 1.0f - w /((3.0 /(1.0+w)) + w - 2.0);

_r = q * q;
_c = r + 1.0f - 2.0f * cos(w) * q;
}

Resonant filter

	Author or source: Paul Kellett

	Created: 2002-01-17 02:07:02

notes

This filter consists of two first order low-pass filters in
series, with some of the difference between the two filter
outputs fed back to give a resonant peak.

You can use more filter stages for a steeper cutoff but the
stability criteria get more complicated if the extra stages
are within the feedback loop.

code

	1
2
3
4
5
6
7

	//set feedback amount given f and q between 0 and 1
fb = q + q/(1.0 - f);

//for each sample...
buf0 = buf0 + f * (in - buf0 + fb * (buf0 - buf1));
buf1 = buf1 + f * (buf0 - buf1);
out = buf1;

Comments

	Date: 2006-01-18 10:59:55

	By: mr.just starting

very nice! how could i turn that into a HPF?

	Date: 2006-01-23 10:53:41

	By: ku.oc.mapson.snosrapsd@psd

The cheats way is to use HPF = sample - out;
If you do a plot, you'll find that it isn't as good as designing an HPF from scratch, but it's good enuff for most ears.
This would also mean that you have a quick method for splitting a signal and operating on the (in)discreet parts separately. :) DSP

	Date: 2006-09-12 14:42:25

	By: uh.etle.fni@yfoocs

This filter calculates bandpass and highpass outputs too during calculation, namely bandpass is buf0 - buf1 and highpass is in - buf0. So, we can rewrite the algorithm:

// f and fb calculation
f = 2.0*sin(pi*freq/samplerate);
/* you can approximate this with f = 2.0*pi*freq/samplerate with tuning error towards nyquist */
fb = q + q/(1.0 - f);

// loop
hp = in - buf0;
bp = buf0 - buf1;
buf0 = buf0 + f * (hp + fb * bp);
buf1 = buf1 + f * (buf0 - buf1);

out = buf1; // lowpass
out = bp; // bandpass
out = hp; // highpass

The slope of the highpass out is not constant, it varies between 6 and 12 dB/Octave with different f and q settings. I'd be interested if anyone derived a proper highpass output from this algorithm.

-- peter schoffhauzer

Resonant low pass filter

	Author or source: “Zxform”

	Type: 24dB lowpass

	Created: 2002-01-17 02:09:31

	Linked files: filters004.txt.

Reverb Filter Generator

	Author or source: Stephen McGovern

	Type: FIR

	Created: 2006-09-01 07:07:58

notes

This is a MATLAB function that makes a rough calculation of a room's impulse response.
The output can then be convolved with an audio clip to produce good and realistic sounding
reverb. I have written a paper discussing the theory used by this algorithm. It is
available at http://stevem.us/rir.html.

NOTES:

 1) Large values of N will use large amounts of memory.
 2) The output is normalized to the largest value of the
 output.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	function [h]=rir(fs, mic, n, r, rm, src);
%RIR Room Impulse Response.
% [h] = RIR(FS, MIC, N, R, RM, SRC) performs a room impulse
% response calculation by means of the mirror image method.
%
% FS = sample rate.
% MIC = row vector giving the x,y,z coordinates of
% the microphone.
% N = The program will account for (2*N+1)3 virtual sources
% R = reflection coefficient for the walls, in general -1<R<1.
% RM = row vector giving the dimensions of the room.
% SRC = row vector giving the x,y,z coordinates of
% the sound source.
%
% EXAMPLE:
%
% >>fs=44100;
% >>mic=[19 18 1.6];
% >>n=12;
% >>r=0.3;
% >>rm=[20 19 21];
% >>src=[5 2 1];
% >>h=rir(fs, mic, n, r, rm, src);
%
% NOTES:
%
% 1) All distances are in meters.
% 2) The output is scaled such that the largest value of the
% absolute value of the output vector is equal to one.
% 3) To implement this filter, you will need to do a fast
% convolution. The program FCONV.m will do this. It can be
% found on the Mathworks File Exchange at
% www.mathworks.com/matlabcentral/fileexchange/. It can also
% be found at www.2pi.us/code/fconv.m
% 4) A paper has been written on this model. It is available at:
% www.2pi.us/rir.html
%
%
%Version 3.4.1
%Copyright Â© 2003 Stephen G. McGovern

%Some of the following comments are references to equations the my paper.

nn=-n:1:n; % Index for the sequence
rms=nn+0.5-0.5*(-1).^nn; % Part of equations 2,3,& 4
srcs=(-1).^(nn); % part of equations 2,3,& 4
xi=srcs*src(1)+rms*rm(1)-mic(1); % Equation 2
yj=srcs*src(2)+rms*rm(2)-mic(2); % Equation 3
zk=srcs*src(3)+rms*rm(3)-mic(3); % Equation 4

[i,j,k]=meshgrid(xi,yj,zk); % convert vectors to 3D matrices
d=sqrt(i.^2+j.^2+k.^2); % Equation 5
time=round(fs*d/343)+1; % Similar to Equation 6

[e,f,g]=meshgrid(nn, nn, nn); % convert vectors to 3D matrices
c=r.^(abs(e)+abs(f)+abs(g)); % Equation 9
e=c./d; % Equivalent to Equation 10

h=full(sparse(time(:),1,e(:))); % Equivalent to equation 11
h=h/max(abs(h)); % Scale output

Simple Tilt equalizer

	Author or source: moc.liamg@321tiloen

	Type: Tilt

	Created: 2009-05-29 15:13:21

notes

There are a few ways to implement this. (crossover, shelves, morphing shelves [hs->lp,
ls->hp] ...etc)
This particular one tries to mimic the behavior of the "Niveau" filter from the "Elysia:
mPressor" compressor.

[The 'Tilt' filter]:
It uses a center frequency (F0) and then boosts one of the ranges above or below F0, while
doing the opposite with the other range.

In the case of the "mPressor" - more extreme settings turn the filter into first order
low-pass or high-pass. This is achieved with the gain factor for one band going close to
-1. (ex: +6db -> lp; -6db -> hp)

Lubomir I. Ivanov

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	//=======================
// tilt eq settings
//
// srate -> sample rate
// f0 -> 20-20khz
// gain -> -6 / +6 db
//=======================
amp = 6/log(2);
denorm = 10^-30;
pi = 22/7;
sr3 = 3*srate;

// conditition:
// gfactor is the proportional gain
//
gfactor = 5;
if (gain > 0) {
 g1 = -gfactor*gain;
 g2 = gain;
} else {
 g1 = -gain;
 g2 = gfactor*gain;
};

//two separate gains
lgain = exp(g1/amp)-1;
hgain = exp(g2/amp)-1;

//filter
omega = 2*pi*f0;
n = 1/(sr3 + omega);
a0 = 2*omega*n;
b1 = (sr3 - omega)*n;

//==================================
// sample loop
// in -> input sample
// out -> output sample
//==================================
lp_out = a0*in + b1*lp_out;
out = in + lgain*lp_out + hgain*(in - lp_out);

Comments

	Date: 2009-05-29 19:16:18

	By: moc.liamg@321tiloen

correction:

(ex: +6db -> hp; -6db -> lp)

	Date: 2017-04-01 09:05:48

	By: moc.liamg@59hsielgladsemaj

Where is the denorm value meant to be used in the code? The code works regardless by noise is created when the gain control being used, it may be a result of the denorm value not being used?

Simple biquad filter from apple.com

	Author or source: moc.liamg@321tiloen

	Type: LP

	Created: 2008-10-27 10:15:16

notes

Simple Biquad LP filter from the AU tutorial at apple.com

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	//cutoff_slider range 20-20000hz
//res_slider range -25/25db
//srate - sample rate

//init
mX1 = 0;
mX2 = 0;
mY1 = 0;
mY2 = 0;
pi = 22/7;

//coefficients
cutoff = cutoff_slider;
res = res_slider;

cutoff = 2 * cutoff_slider / srate;
res = pow(10, 0.05 * -res_slider);
k = 0.5 * res * sin(pi * cutoff);
c1 = 0.5 * (1 - k) / (1 + k);
c2 = (0.5 + c1) * cos(pi * cutoff);
c3 = (0.5 + c1 - c2) * 0.25;

mA0 = 2 * c3;
mA1 = 2 * 2 * c3;
mA2 = 2 * c3;
mB1 = 2 * -c2;
mB2 = 2 * c1;

//loop
output = mA0*input + mA1*mX1 + mA2*mX2 - mB1*mY1 - mB2*mY2;

mX2 = mX1;
mX1 = input;
mY2 = mY1;
mY1 = output;

Comments

	Date: 2009-03-05 13:44:24

	By: moc.liamg@321tiloen

here are coefficients for the hp version.
the br,bp & peak are also easy to calculate:

k = 0.5*res*sin(pi*cutoff);
c1 = 0.5*(1-k)/(1+k);
c2 = (0.5+c1)*cos(pi*cutoff);
c3 = (0.5+c1+c2)*0.25;

a0 = 2*c3;
a1 = -4*c3;
a2 = 2*c3;
b1 = -2*c2;
b2 = 2*c1;

if you wish to create a cascade, use the this:

//----sample loop

//mem: buffer array
//N: number of biquads, n=4 -> 48dB/oct

//set input here

for (i=0;i<N;i++) {
output = a0 * input + a1 * mem[4*i+1] + a2 * mem[4*i+2] - b1 * mem[4*i+3] - b2 * mem[4*i+4];
mem[4*i+2] = mem[4*i+1];
mem[4*i+1] = input;
mem[4*i+4] = mem[4*i+3];
mem[4*i+3] = output;
);

//----sample loop

	Date: 2009-04-20 11:44:26

	By: moc.liamg@321tiloen

i've missed a line:

===========================
mem[4*i+3] = output;

//>>> insert here
input = output;
//>>> insert here

);
//----sample loop
===========================

lubomir

Spuc’s open source filters

	Author or source: moc.liamg@321tiloen

	Type: Elliptic, Butterworth, Chebyshev

	Created: 2008-10-27 10:14:41

notes

http://www.koders.com/info.aspx?c=ProjectInfo&pid=FQLFTV9LA27MF421YKXV224VWH

Spuc has good C++ versions of some classic filter models.

Download full package from:
http://spuc.sourceforge.net

State Variable Filter (Chamberlin version)

	Author or source: Hal Chamberlin, “Musical Applications of Microprocessors,” 2nd Ed, Hayden Book Company 1985. pp 490-492.

	Created: 2003-04-14 18:33:53

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	//Input/Output
 I - input sample
 L - lowpass output sample
 B - bandpass output sample
 H - highpass output sample
 N - notch output sample
 F1 - Frequency control parameter
 Q1 - Q control parameter
 D1 - delay associated with bandpass output
 D2 - delay associated with low-pass output

// parameters:
 Q1 = 1/Q
 // where Q1 goes from 2 to 0, ie Q goes from .5 to infinity

 // simple frequency tuning with error towards nyquist
 // F is the filter's center frequency, and Fs is the sampling rate
 F1 = 2*pi*F/Fs

 // ideal tuning:
 F1 = 2 * sin(pi * F / Fs)

// algorithm
 // loop
 L = D2 + F1 * D1
 H = I - L - Q1*D1
 B = F1 * H + D1
 N = H + L

 // store delays
 D1 = B
 D2 = L

 // outputs
 L,H,B,N

Comments

	Date: 2005-03-21 00:08:03

	By: ed.luosfosruoivas@naitsirhC

Object Pascal Implementation

-denormal fixed
-not optimized

unit SVFUnit;

interface

type
 TFrequencyTuningMethod= (ftmSimple, ftmIdeal);
 TSVF = class
 private
 fQ1,fQ : Single;
 fF1,fF : Single;
 fFS : Single;
 fD1,fD2 : Single;
 fFTM : TFrequencyTuningMethod;
 procedure SetFrequency(v:Single);
 procedure SetQ(v:Single);
 public
 constructor Create;
 destructor Destroy; override;
 procedure Process(const I : Single; var L,B,N,H: Single);
 property Frequency: Single read fF write SetFrequency;
 property SampleRate: Single read fFS write fFS;
 property Q: Single read fQ write SetQ;
 property FrequencyTuningMethod: TFrequencyTuningMethod read fFTM write fFTM;
 end;

implementation

uses sysutils;

const kDenorm = 1.0e-24;

constructor TSVF.Create;
begin
 inherited;
 fQ1:=1;
 fF1:=1000;
 fFS:=44100;
 fFTM:=ftmIdeal;
end;

destructor TSVF.Destroy;
begin
 inherited;
end;

procedure TSVF.SetFrequency(v:Single);
begin
 if fFS<=0 then raise exception.create('Sample Rate Error!');
 if v<>fF then
 begin
 fF:=v;
 case fFTM of
 ftmSimple:
 begin
 // simple frequency tuning with error towards nyquist
 // F is the filter's center frequency, and Fs is the sampling rate
 fF1:=2*pi*fF/fFS;
 end;
 ftmIdeal:
 begin
 // ideal tuning:
 fF1:=2*sin(pi*fF/fFS);
 end;
 end;
 end;
end;

procedure TSVF.SetQ(v:Single);
begin
 if v<>fQ then
 begin
 if v>=0.5
 then fQ:=v
 else fQ:=0.5;
 fQ1:=1/fQ;
 end;
end;

procedure TSVF.Process(const I : Single; var L,B,N,H: Single);
begin
 L:=fD2+fF1*fD1-kDenorm;
 H:=I-L-fQ1*fD1;
 B:=fF1*H+fD1;
 N:=H+L;
 // store delays
 fD1:=B;
 fD2:=kDenorm+L;
end;

end.

	Date: 2005-03-21 14:32:24

	By: ed.luosfosruoivas@naitsirhC

Ups, there are still denormal bugs in it...
(zu früh gefreut...)

State Variable Filter (Double Sampled, Stable)

	Author or source: Andrew Simper

	Type: 2 Pole Low, High, Band, Notch and Peaking

	Created: 2003-10-11 01:57:00

notes

Thanks to Laurent de Soras for the stability limit
and Steffan Diedrichsen for the correct notch output.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	input = input buffer;
output = output buffer;
fs = sampling frequency;
fc = cutoff frequency normally something like:
 440.0*pow(2.0, (midi_note - 69.0)/12.0);
res = resonance 0 to 1;
drive = internal distortion 0 to 0.1
freq = 2.0*sin(PI*MIN(0.25, fc/(fs*2))); // the fs*2 is because it's double sampled
damp = MIN(2.0*(1.0 - pow(res, 0.25)), MIN(2.0, 2.0/freq - freq*0.5));
notch = notch output
low = low pass output
high = high pass output
band = band pass output
peak = peaking output = low - high
--
double sampled svf loop:
for (i=0; i<numSamples; i++)
{
 in = input[i];
 notch = in - damp*band;
 low = low + freq*band;
 high = notch - low;
 band = freq*high + band - drive*band*band*band;
 out = 0.5*(notch or low or high or band or peak);
 notch = in - damp*band;
 low = low + freq*band;
 high = notch - low;
 band = freq*high + band - drive*band*band*band;
 out += 0.5*(same out as above);
 output[i] = out;
}

Comments

	Date: 2004-11-19 13:30:07

	By: eb.tenyks@didid

Correct me if I'm wrong, but the double-sampling here looks like doubling the input, which is a bad resampling introducing aliasing, followed by an averaging of the 2 outputs, thus filtering that aliasing.
It works, but I think it (the averaging) has the side effect of smoothing up the high freqs in the source material, thus with this filter you can't really fully open it and have the original signal.
At least, it's what seems to happen practically in my tests.

Problem is that this SVF indeed has a crap stability near nyquist, but I can't think of any better way to make it work better, unless you use a better but much more costy upsampling/downsampling.

Anyone confirms?

	Date: 2004-11-26 09:45:28

	By: kd.utd.xaspmak@mj

Interesting that this question pops up right now. Lately I have been wondering about the same thing, not so much about the (possibly limited) frequency range, but about stability problems of the filter that I have had (even when using smoothed control signals). The non-linearity introduced by the "drive*band*band*band" factor does not seem to be covered by the stability measurements.
In particular I would like to know, how the filter graphs in http://vellocet.com/dsp/svf/svf-stability.html and http://www-2.cs.cmu.edu/~eli/tmp/svf/stability.png were obtained? Would you like to post the code that generated the stability graph to the musicdsp archive?
For the double-sampling scheme, wouldn't it make more sense to zero-stuff the input signal (that is interleave all input samples with zeros) instead of doubling the samples?

	Date: 2004-11-27 00:07:09

	By: kd.utd.xaspmak@mj

Oh, just noticed that Eli's SVF stability measurement code has already been made available at http://www-2.cs.cmu.edu/~eli/tmp/svf/
However, I think it is up to him to decide whether he wants to include it in the archive or not.

	Date: 2007-12-13 11:01:38

	By: moc.kisuw@kmailliw

I was having problems with this filter when DRIVE is set to MAX and Rezonance is set to MIN. A quick way to fix it was to make DRIVE*REZO, so when there's no resonance, there's no need for DRIVE anyway. That fixed the problem.

	Date: 2017-05-11 21:39:28

	By: moc.liamg@libojyr

Here is how I am handling the resampling. I know from trying this zero padding is nasty (terrible noise) without a good filter for downsampling back to base rate.

Below the input is linear interpolated input. This is a slight improvement on what Nigel Redmon suggests here: http://www.earlevel.com/main/2003/03/02/the-digital-state-variable-filter/

Which is simply to tick the filter twice per sample with the same input. This is very similar to above code except that there should not be averaging of the two outputs. You just tick the filter twice with the same input and take the output. The state variables take care of the band limiting. Remember the aliased terms are multiples of the sample rate so they fall on 0 and nyquist frequencies, not really having more severe artefacts than what you get from running the filter at base sample rate.

For the low pass and bandpass outputs the filter itself performs the band-limiting necessary for clean decimation. Intuitively the high pass output is due to a phase cancellation with the dual-integrator loop, so it should be about as clean as the LP and BP outputs. The dual integrator is band-limiting in nature...just some thoughts.

//-- Here's the Code --//
//x[i] = input
//x1 = x[i-1] = last input
//Run 1 : Linear interpolate between x[n-1] and x[i]
lpf = lpf + f* bpf;
hpf = 0.5 * g * (x[i] + x1) - lpf - q*bpf;
bpf = f* hpf + bpf;

//Run 2
lpf = lpf + f* bpf;
hpf = g * x[i] - lpf - q*bpf;
bpf = f* hpf + bpf;

x1 = x[i];

// Coefficients on each state variable
// allows for any filter response function possible
// with a biquad filter structure
x[i] = lmix*lpf + hmix*hpf + bmix*bpf;

State variable

	Author or source: Effect Deisgn Part 1, Jon Dattorro, J. Audio Eng. Soc., Vol 45, No. 9, 1997 September

	Type: 12db resonant low, high or bandpass

	Created: 2002-01-17 02:01:50

notes

Digital approximation of Chamberlin two-pole low pass. Easy to calculate coefficients,
easy to process algorithm.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	cutoff = cutoff freq in Hz
fs = sampling frequency //(e.g. 44100Hz)
f = 2 sin (pi * cutoff / fs) //[approximately]
q = resonance/bandwidth [0 < q <= 1] most res: q=1, less: q=0
low = lowpass output
high = highpass output
band = bandpass output
notch = notch output

scale = q

low=high=band=0;

//--beginloop
low = low + f * band;
high = scale * input - low - q*band;
band = f * high + band;
notch = high + low;
//--endloop

Comments

	Date: 2006-01-11 15:06:56

	By: nope

Wow, great. Sounds good, thanks.

	Date: 2007-02-13 13:45:02

	By: es.aelp@maps.on

The variable "high" doesn't have to be initialised, does it? It looks to me like the only variables that need to be kept around between iterations are "low" and "band".

	Date: 2007-02-13 15:28:30

	By: moc.erehwon@ydobon

Right. High and notch are calculated from low and band every iteration.

	Date: 2007-07-18 11:34:21

	By: og.on@alal

Anyone know what the difference is between q and scale?

	Date: 2007-07-29 17:17:16

	By: moc.liamtoh@rebbadrebbaj

"most res: q=1, less: q=0"

Someone correct me if I'm wrong, but isn't that backwards? q=0 is max res, q=1 is min res.

q and scale are the same value. What the algorithm is doing is scaling the input the higher the resonance is turned up to prevent clipping. One reason why I think 0 equals max resonance and 1 equals no resonance.

So as q approaches zero, the input is attenuated more and more. In other words, as you turn up the resonance, the input is turned down.

	Date: 2007-11-16 12:58:03

	By: rettam.ton@seod

scale = sqrt(q);

and

//value (0;100) - for example
q = sqrt(1.0 - atan(sqrt(value)) * 2.0 / PI);
f = frqHz / sampleRate*4.;

uffffffff :)

Now enjoy!

	Date: 2008-11-29 20:04:47

	By: gro.ybbek@bk

One drawback of this is that the cutoff frequency can only go up to SR/4 instead of SR/2 - but you can easily compensate it by using 2x oversampling, eg. simply running this thing twice per sample (apply input interpolation or further output filtering ad lib, but from my experience simple linear interpolation of the input values (in and (in+lastin)/2) works well enough).

	Date: 2009-03-05 13:24:35

	By: moc.liamg@321tiloen

here is the filter with 2x oversampling + some x,y pad functionality to morph between states:
like this fx (uses different filter)

http://img299.imageshack.us/img299/4690/statevarible.png

smoothing with interpolation is suggest for most parameters:

//sr: samplerate;
//cutoff: 20 - 20k;
//qvalue: 0 - 100;
//x, y: 0 - 1

q = sqrt(1 - atan(sqrt(qvalue)) * 2 / pi);
scale = sqrt(q);
f = slider1 / sr * 2; // * 2 here instead of 4

//----------sample loop

//set 'input' here

//os x2
for (i=0; i<2; i++) {
low = low + f * band;
high = scale * input - low - q * band;
band = f * high + band;
notch = high + low;
);

// x,y pad scheme
//
// high -- notch
// | |
// | |
// low ---- band
//
//
// use two pairs

//low, high
pair1 = low * y + high * (1-y);
//band, notch
pair2 = band * y + notch * (1-y);

//out
out = pair2 * x + pair1 * (1-x);

//----------sample loop

Stilson’s Moog filter code

	Author or source: DFL

	Type: 4-pole LP, with fruity BP/HP

	Created: 2003-05-15 14:23:51

notes

Mind your p's and Q's...

This code was borrowed from Tim Stilson, and rewritten by me into a pd extern (moog~)
available here:
http://www-ccrma.stanford.edu/~dfl/pd/index.htm

I ripped out the essential code and pasted it here...

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	WARNING: messy code follows ;)

// table to fixup Q in order to remain constant for various pole frequencies, from Tim Stilson's code @ CCRMA (also in CLM distribution)

static float gaintable[199] = { 0.999969, 0.990082, 0.980347, 0.970764, 0.961304, 0.951996, 0.94281, 0.933777, 0.924866, 0.916077, 0.90741, 0.898865, 0.89044
2, 0.882141 , 0.873962, 0.865906, 0.857941, 0.850067, 0.842346, 0.834686, 0.827148, 0.819733, 0.812378, 0.805145, 0.798004, 0.790955, 0.783997, 0.77713, 0.77
0355, 0.763672, 0.75708 , 0.75058, 0.744141, 0.737793, 0.731537, 0.725342, 0.719238, 0.713196, 0.707245, 0.701355, 0.695557, 0.689819, 0.684174, 0.678558, 0.
673035, 0.667572, 0.66217, 0.65686, 0.651581, 0.646393, 0.641235, 0.636169, 0.631134, 0.62619, 0.621277, 0.616425, 0.611633, 0.606903, 0.602234, 0.597626, 0.
593048, 0.588531, 0.584045, 0.579651, 0.575287 , 0.570953, 0.566681, 0.562469, 0.558289, 0.554169, 0.550079, 0.546051, 0.542053, 0.538116, 0.53421, 0.530334,
 0.52652, 0.522736, 0.518982, 0.515289, 0.511627, 0.507996 , 0.504425, 0.500885, 0.497375, 0.493896, 0.490448, 0.487061, 0.483704, 0.480377, 0.477081, 0.4738
16, 0.470581, 0.467377, 0.464203, 0.46109, 0.457977, 0.454926, 0.451874, 0.448883, 0.445892, 0.442932, 0.440033, 0.437134, 0.434265, 0.431427, 0.428619, 0.42
5842, 0.423096, 0.42038, 0.417664, 0.415009, 0.412354, 0.409729, 0.407135, 0.404572, 0.402008, 0.399506, 0.397003, 0.394501, 0.392059, 0.389618, 0.387207, 0.
384827, 0.382477, 0.380127, 0.377808, 0.375488, 0.37323, 0.370972, 0.368713, 0.366516, 0.364319, 0.362122, 0.359985, 0.357849, 0.355713, 0.353607, 0.351532,
0.349457, 0.347412, 0.345398, 0.343384, 0.34137, 0.339417, 0.337463, 0.33551, 0.333588, 0.331665, 0.329773, 0.327911, 0.32605, 0.324188, 0.322357, 0.320557,
0.318756, 0.316986, 0.315216, 0.313446, 0.311707, 0.309998, 0.308289, 0.30658, 0.304901, 0.303223, 0.301575, 0.299927, 0.298309, 0.296692, 0.295074, 0.293488
, 0.291931, 0.290375, 0.288818, 0.287262, 0.285736, 0.284241, 0.282715, 0.28125, 0.279755, 0.27829, 0.276825, 0.275391, 0.273956, 0.272552, 0.271118, 0.26974
5, 0.268341, 0.266968, 0.265594, 0.264252, 0.262909, 0.261566, 0.260223, 0.258911, 0.257599, 0.256317, 0.255035, 0.25375 };

static inline float saturate(float input) { //clamp without branching
#define _limit 0.95
 float x1 = fabsf(input + _limit);
 float x2 = fabsf(input - _limit);
 return 0.5 * (x1 - x2);
}

static inline float crossfade(float amount, float a, float b) {
 return (1-amount)*a + amount*b;
}

//code for setting Q
 float ix, ixfrac;
 int ixint;
 ix = x->p * 99;
 ixint = floor(ix);
 ixfrac = ix - ixint;
 Q = resonance * crossfade(ixfrac, gaintable[ixint + 99], gaintable[ixint + 100]);

//code for setting pole coefficient based on frequency
 float fc = 2 * frequency / x->srate;
 float x2 = fc*fc;
 float x3 = fc*x2;
 p = -0.69346 * x3 - 0.59515 * x2 + 3.2937 * fc - 1.0072; //cubic fit by DFL, not 100% accurate but better than nothing...
}

process loop:
 float state[4], output; //should be global scope / preserved between calls
 int i,pole;
 float temp, input;

 for (i=0; i < numSamples; i++) {
 input = *(in++);
 output = 0.25 * (input - output); //negative feedback

 for(pole = 0; pole < 4; pole++) {
 temp = state[pole];
 output = saturate(output + p * (output - temp));
 state[pole] = output;
 output = saturate(output + temp);
 }
 lowpass = output;
 highpass = input - output;
 bandpass = 3 * x->state[2] - x->lowpass; //got this one from paul kellet
 *out++ = lowpass;

 output *= Q; //scale the feedback
 }

Comments

	Date: 2004-06-07 08:01:13

	By: ku.oc.sdnuosdionamuh@nhoj

What is "x->p" in the code for setting Q?

	Date: 2004-06-09 07:19:43

	By: DFL

you should set the frequency first, to get the value of p.
Then use that value to get the normalized Q value.

	Date: 2004-06-09 12:22:00

	By: ku.oc.sdnuosdionamuh@nhoj

Ah! That p. Thanks.

	Date: 2009-01-06 13:35:18

	By: soeren.parton->soerenskleinewelt,de

Hi!

My Output gets stuck at about 1E-7 even when the input is way below. Is that a quantisation problem? Looks as if it´s the saturation´s fault...

Cheers
Sören

	Date: 2010-10-27 15:51:42

	By: ten.reknirdaet@cisum

I have not tested, but it looks like gaintable and interpolation can be replaced using approx:
 1 / (x * 1.48 + 0.85) - 0.1765

(range 0 -> 1)

Peace
/Martin

Time domain convolution with O(n^log2(3))

	Author or source: Wilfried Welti

	Created: 2002-02-10 12:38:01

notes

[Quoted from Wilfrieds mail...]
I found last weekend that it is possible to do convolution in time domain (no complex
numbers, 100% exact result with int) with O(n^log2(3)) (about O(n^1.58)).

Due to smaller overhead compared to FFT-based convolution, it should be the fastest
algorithm for medium sized FIR's.
Though, it's slower as FFT-based convolution for large n.

It's pretty easy:

Let's say we have two finite signals of length 2n, which we want convolve : A and B. Now
we split both signals into parts of size n, so we get A = A1 + A2, and B = B1 +B2.

Now we can write:

(1) A*B = (A1+A2)*(B1+B2) = A1*B1 + A2*B1 + A1*B2 + A2*B2

where * means convolution.

This we knew already: We can split a convolution into four convolutions of halved size.

Things become interesting when we start shifting blocks in time:

Be z a signal which has the value 1 at x=1 and zero elsewhere. Convoluting a signal X with
z is equivalent to shifting X by one rightwards. When I define z^n as n-fold convolution
of z with itself, like: z^1 = z, z^2 = z*z, z^0 = z shifted leftwards by 1 = impulse at
x=0, and so on, I can use it to shift signals:

X * z^n means shifting the signal X by the value n rightwards.
X * z^-n means shifting the signal X by the value n leftwards.

Now we look at the following term:

(2) (A1 + A2 * z^-n) * (B1 + B2 * z^-n)

This is a convolution of two blocks of size n: We shift A2 by n leftwards so it completely
overlaps A1, then we add them.
We do the same thing with B1 and B2. Then we convolute the two resulting blocks.

now let's transform this term:

(3) (A1 + A2 * z^-n) * (B1 + B2 * z^-n)
 = A1*B1 + A1*B2*z^-n + A2*z^-n*B1 + A2*z^ n*B2*z^-n
 = A1*B1 + (A1*B2 + A2*B1)*z^-n + A2*B2*z^-2n

(4) (A1 + A2 * z^-n) * (B1 + B2 * z^-n) - A1*B1 - A2*B2*z^-2n

 = (A1*B2 + A2*B1)*z^-n

Now we convolute both sides of the equation (4) by z^n:

(5) (A1 + A2 * z^-n)*(B1 + B2 * z^-n)*z^n - A1*B1*z^n - A2*B2*z^-n

 = (A1*B2 + A2*B1)

Now we see that the right part of equation (5) appears within equation (1), so we can
replace this appearance by the left part of eq (5).

(6) A*B = (A1+A2)*(B1+B2) = A1*B1 + A2*B1 + A1*B2 + A2*B2
 = A1*B1
 + (A1 + A2 * z^-n)*(B1 + B2 * z^-n)*z^n - A1*B1*z^n - A2*B2*z^-n
 + A2*B2

Voila!

We have constructed the convolution of A*B with only three convolutions of halved size.
(Since the convolutions with z^n and z^-n are only shifts
of blocks with size n, they of course need only n operations for processing :)

This can be used to construct an easy recursive algorithm of Order O(n^log2(3))

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	void convolution(value* in1, value* in2, value* out, value* buffer, int size)
{
 value* temp1 = buffer;
 value* temp2 = buffer + size/2;
 int i;

 // clear output.
 for (i=0; i<size*2; i++) out[i] = 0;

 // Break condition for recursion: 1x1 convolution is multiplication.

 if (size == 1)
 {
 out[0] = in1[0] * in2[0];
 return;
 }

 // first calculate (A1 + A2 * z^-n)*(B1 + B2 * z^-n)*z^n

 signal_add(in1, in1+size/2, temp1, size/2);
 signal_add(in2, in2+size/2, temp2, size/2);
 convolution(temp1, temp2, out+size/2, buffer+size, size/2);

 // then add A1*B1 and substract A1*B1*z^n

 convolution(in1, in2, temp1, buffer+size, size/2);
 signal_add_to(out, temp1, size);
 signal_sub_from(out+size/2, temp1, size);

 // then add A2*B2 and substract A2*B2*z^-n

 convolution(in1+size/2, in2+size/2, temp1, buffer+size, size/2);
 signal_add_to(out+size, temp1, size);
 signal_sub_from(out+size/2, temp1, size);
}

"value" may be a suitable type like int or float.
Parameter "size" is the size of the input signals and must be a power of 2. out and buffer must point to arrays of size 2*n.

Just to be complete, the helper functions:

void signal_add(value* in1, value* in2, value* out, int size)
{
 int i;
 for (i=0; i<size; i++) out[i] = in1[i] + in2[i];
}

void signal_sub_from(value* out, value* in, int size)
{
 int i;
 for (i=0; i<size; i++) out[i] -= in[i];
}

void signal_add_to(value* out, value* in, int size)
{
 int i;
 for (i=0; i<size; i++) out[i] += in[i];
}

Comments

	Date: 2003-11-05 11:53:05

	By: ed.luosfosruoivas@naitsirhC

Here is a delphi translation of the code:

// "value" may be a suitable type like int or float.
// Parameter "size" is the size of the input signals and must be a power of 2.
// out and buffer must point to arrays of size 2*n.

procedure signal_add(in1, in2, ou1 :PValue; Size:Integer);
var i : Integer;
begin
 for i:=0 to Size-1 do
 begin
 ou1^[i] := in1^[i] + in2^[i];
 end;
end;

procedure signal_sub_from(in1, ou1 :PValue; Size:Integer);
var i : Integer;
begin
 for i:=0 to Size-1 do
 begin
 ou1^[i] := ou1^[i] - in1^[i];
 end;
end;

procedure signal_add_to(in1, ou1: PValue; Size:Integer);
var i : Integer;
 po, pi1 : PValue;
begin
 po:=ou1;
 pi1:=in1;
 for i:=0 to Size-1 do
 begin
 ou1^[i] := ou1^[i] + in1^[i];
 Inc(po);
 Inc(pi1);
 end;
end;

procedure convolution(in1, in2, ou1, buffer :PValue; Size:Integer);
var tmp1, tmp2 : PValue;
 i : Integer;
begin
 tmp1:=Buffer;
 tmp2:=@(Buffer^[(Size div 2)]);

 // clear output.
 for i:=0 to size*2 do ou1^[i]:=0;

 // Break condition for recursion: 1x1 convolution is multiplication.
 if Size = 1 then
 begin
 ou1^[0] := in1^[0] * in2^[0];
 exit;
 end;

 // first calculate (A1 + A2 * z^-n)*(B1 + B2 * z^-n)*z^n
 signal_add(in1, @(in1^[(Size div 2)]), tmp1, Size div 2);
 signal_add(in2, @(in1^[(Size div 2)]), tmp2, Size div 2);
 convolution(tmp1, tmp2, @(ou1^[(Size div 2)]), @(Buffer^[Size]), Size div 2);

 // then add A1*B1 and substract A1*B1*z^n
 convolution(in1, in2, tmp1, @(Buffer^[Size]), Size div 2);
 signal_add_to(ou1, tmp1, size);
 signal_sub_from(@(ou1^[(Size div 2)]), tmp1, size);

 // then add A2*B2 and substract A2*B2*z^-n
 convolution(@(in1^[(Size div 2)]), @(in2^[(Size div 2)]), tmp1, @(Buffer^[Size]), Size div 2);
 signal_add_to(@(ou1^[Size]), tmp1, size);
 signal_sub_from(@(ou1^[Size]), tmp1, size);
end;

	Date: 2003-11-05 12:19:05

	By: ed.luosfosruoivas@naitsirhC

Sorry, i forgot the definitions:

type
 Values = Array[0..0] of Single;
 PValue = ^Values;

	Date: 2004-04-19 19:47:52

	By: ed.luosfosruoivas@naitsirhC

I have implemented a Suround-Plugin using this Source-Code.
Basicly a FIR-Filter with 512 Taps, bundled with some HRTF's for sourround panning

http://www.savioursofsoul.de/Christian/ITA-HRTF.EXE

(Delphi Sourcecode available on request)

Time domain convolution with O(n^log2(3))

	Author or source: Magnus Jonsson

	Created: 2002-09-07 23:23:50

notes

[see other code by Wilfried Welti too!]

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	void mul_brute(float *r, float *a, float *b, int w)
{
 for (int i = 0; i < w+w; i++)
 r[i] = 0;
 for (int i = 0; i < w; i++)
 {
 float *rr = r+i;
 float ai = a[i];
 for (int j = 0; j < w; j++)
 rr[j] += ai*b[j];
 }
}

// tmp must be of length 2*w
void mul_knuth(float *r, float *a, float *b, int w, float *tmp)
{
 if (w < 30)
 {
 mul_brute(r, a, b, w);
 }
 else
 {
 int m = w>>1;

 for (int i = 0; i < m; i++)
 {
 r[i] = a[m+i]-a[i];
 r[i+m] = b[i]-b[m+i];
 }

 mul_knuth(tmp, r , r+m, m, tmp+w);
 mul_knuth(r , a , b , m, tmp+w);
 mul_knuth(r+w, a+m, b+m, m, tmp+w);

 for (int i = 0; i < m; i++)
 {
 float bla = r[m+i]+r[w+i];
 r[m+i] = bla+r[i]+tmp[i];
 r[w+i] = bla+r[w+m+i]+tmp[i+m];
 }
 }
}

Type : LPF 24dB/Oct

	Author or source: ed.luosfosruoivas@naitsirhC

	Type: Bessel Lowpass

	Created: 2006-07-28 17:59:18

notes

The filter tends to be unsable for low frequencies in the way, that it seems to flutter,
but it never explode. At least here it doesn't.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	First calculate the prewarped digital frequency:

K = tan(Pi * Frequency / Samplerate);
K2 = K*K; // speed improvement

Then calc the digital filter coefficients:

A0 = ((((105*K + 105)*K + 45)*K + 10)*K + 1);
A1 = -(((420*K + 210)*K2 - 20)*K - 4)*t;
A2 = -((630*K2 - 90)*K2 + 6)*t;
A3 = -(((420*K - 210)*K2 + 20)*K - 4)*t;
A4 = -((((105*K - 105)*K + 45)*K - 10)*K + 1)*t;

B0 = 105*K2*K2;
B1 = 420*K2*K2;
B2 = 630*K2*K2;
B3 = 420*K2*K2;
B4 = 105*K2*K2;

Per sample calculate:

Output = B0*Input + State0;
State0 = B1*Input + A1/A0*Output + State1;
State1 = B2*Input + A2/A0*Output + State2;
State2 = B3*Input + A3/A0*Output + State3;
State3 = B4*Input + A4/A0*Output;

For high speed substitude A1/A0 with A1' = A1/A0...

Comments

	Date: 2006-07-28 22:21:29

	By: ed.luosfosruoivas@naitsirhC

It turns out, that the filter is only unstable if the coefficient/state precision isn't high enough. Using double instead of single precision already makes it a lot more stable.

	Date: 2006-10-16 00:42:11

	By: ed.luosfosruoivas@naitsirhC

Just found out, that I forgot to remove the temporary variable 't'. It was used in my code for the speedup. You can simply ignore and delete it.

	Date: 2009-02-13 14:24:41

	By: kd.oohay@eeffocetarak

Changing the frequency also seems to affect the volume quite a lot. That can't be right? Maybe you should re-post this (and remove the "t" this time)? ;)

	Date: 2013-02-13 11:58:19

	By: ur.sgn@fez_jd

Your filter does not work! Arise overload in the calculation of coefficients A and B in the cutoff frequency of approximately 10 khz. At low frequencies, the coefficient of the gain increases proportional to the frequency cutoff, which causes congestion. I also noticed that the filter on this basis, the package of ASIO/DSP - DDspBesselFilter.pas does not work, although Butterworth (DDspButterworthFilter.pas) and Chebyshev (DDspChebyshevFilter.pas) work perfectly!

Various Biquad filters

	Author or source: JAES, Vol. 31, No. 11, 1983 November

	Created: 2002-01-17 02:08:47

	Linked files: filters003.txt.

notes

(see linkfile)
Filters included are:
presence
shelvelowpass
2polebp
peaknotch
peaknotch2

Comments

	Date: 2008-10-19 23:02:44

	By: moc.liamg@321tiloen

I'm kinda stuck trying to figure out the 'pointer' 'structure pointer' loop in the presence EQ.

Can someone explain:

...

 *a0 = a2plus1 + alphan*ma2plus1;
 *a1 = 4.0*a;
 *a2 = a2plus1 - alphan*ma2plus1;

 b0 = a2plus1 + alphad*ma2plus1;
 *b2 = a2plus1 - alphad*ma2plus1;

 recipb0 = 1.0/b0;
 *a0 *= recipb0;
 *a1 *= recipb0;
 *a2 *= recipb0;
 *b1 = *a1;
 *b2 *= recipb0;

....

void setfilter_presence(f,freq,boost,bw)
filter *f;
double freq,boost,bw;
{
 presence(freq/(double)SR,boost,bw/(double)SR,
 &f->cx,&f->cx1,&f->cx2,&f->cy1,&f->cy2);
 f->cy1 = -f->cy1;
 f->cy2 = -f->cy2;
}

How can this be translated into something more easy to understand.

Input = ...
Output = ...

	Date: 2008-10-28 12:15:21

	By: moc.liamg@321tiloen

Managed to port the presence eq properly. And its sounds great!

Altho I did some changes to some of the code.

changed "d /= mag" to "d = mag"
"bw/srate" to "bw"

There results I got are stable within there parameters:

freq: 3100-18500hz
boost: 0-15db
bw: 0.07-0.40

Really good sound from this filter!

Windowed Sinc FIR Generator

	Author or source: Bob Maling

	Type: LP, HP, BP, BS

	Created: 2005-04-12 20:19:47

	Linked files: wsfir.h.

notes

This code generates FIR coefficients for lowpass, highpass, bandpass, and bandstop filters
by windowing a sinc function.

The purpose of this code is to show how windowed sinc filter coefficients are generated.
Also shown is how highpass, bandpass, and bandstop filters can be made from lowpass
filters.

Included windows are Blackman, Hanning, and Hamming. Other windows can be added by
following the structure outlined in the opening comments of the header file.

Comments

	Date: 2005-04-15 00:02:33

	By: ed.luosfosruoivas@naitsirhC

// Object Pascal Port...

unit SincFIR;

(* Windowed Sinc FIR Generator
 Bob Maling (BobM.DSP@gmail.com)
 Contributed to musicdsp.org Source Code Archive
 Last Updated: April 12, 2005
 Translated to Object Pascal by Christian-W. Budde

 Usage:
 Lowpass:wsfirLP(H, WindowType, CutOff)
 Highpass:wsfirHP(H, WindowType, CutOff)
 Bandpass:wsfirBP(H, WindowType, LowCutOff, HighCutOff)
 Bandstop:wsfirBS(H, WindowType, LowCutOff, HighCutOff)

 where:
 H (TDoubleArray): empty filter coefficient table (SetLength(H,DesiredLength)!)
 WindowType (TWindowType): wtBlackman, wtHanning, wtHamming
 CutOff (double): cutoff (0 < CutOff < 0.5, CutOff = f/fs)
 --> for fs=48kHz and cutoff f=12kHz, CutOff = 12k/48k => 0.25

 LowCutOff (double):low cutoff (0 < CutOff < 0.5, CutOff = f/fs)
 HighCutOff (double):high cutoff (0 < CutOff < 0.5, CutOff = f/fs)

 Windows included here are Blackman, Blackman-Harris, Gaussian, Hanning
 and Hamming.*)

interface

uses Math;

type TDoubleArray = array of Double;
 TWindowType = (wtBlackman, wtHanning, wtHamming, wtBlackmanHarris,
 wtGaussian); // Window type contstants

// Function prototypes
procedure wsfirLP(var H : TDoubleArray; const WindowType : TWindowType; const CutOff : Double);
procedure wsfirHP(var H : TDoubleArray; const WindowType : TWindowType; const CutOff : Double);
procedure wsfirBS(var H : TDoubleArray; const WindowType : TWindowType; const LowCutOff, HighCutOff : Double);
procedure wsfirBP(var H : TDoubleArray; const WindowType : TWindowType; const LowCutOff, HighCutOff : Double);
procedure genSinc(var Sinc : TDoubleArray; const CutOff : Double);
procedure wGaussian(var W : TDoubleArray);
procedure wBlackmanHarris(var W : TDoubleArray);
procedure wBlackman(var W : TDoubleArray);
procedure wHanning(var W : TDoubleArray);
procedure wHamming(var W : TDoubleArray);

implementation

// Generate lowpass filter
// This is done by generating a sinc function and then windowing it
procedure wsfirLP(var H : TDoubleArray; const WindowType : TWindowType; const CutOff : Double);
begin
 genSinc(H, CutOff); // 1. Generate Sinc function
 case WindowType of // 2. Generate Window function -> lowpass filter!
 wtBlackman: wBlackman(H);
 wtHanning: wHanning(H);
 wtHamming: wHamming(H);
 wtGaussian: wGaussian(H);
 wtBlackmanHarris: wBlackmanHarris(H);
 end;
end;

// Generate highpass filter
// This is done by generating a lowpass filter and then spectrally inverting it
procedure wsfirHP(var H : TDoubleArray; const WindowType : TWindowType; const CutOff : Double);
var i : Integer;
begin
 wsfirLP(H, WindowType, CutOff); // 1. Generate lowpass filter

 // 2. Spectrally invert (negate all samples and add 1 to center sample) lowpass filter
 // = delta[n-((N-1)/2)] - h[n], in the time domain
 for i:=0 to Length(H)-1
 do H[i]:=H[i]*-1.0;
 H[(Length(H)-1) div 2]:=H[(Length(H)-1) div 2]+1.0;
end;

// Generate bandstop filter
// This is done by generating a lowpass and highpass filter and adding them
procedure wsfirBS(var H : TDoubleArray; const WindowType : TWindowType; const LowCutOff, HighCutOff : Double);
var i : Integer;
 H2 : TDoubleArray;
begin
 SetLength(H2,Length(H));

 // 1. Generate lowpass filter at first (low) cutoff frequency
 wsfirLP(H, WindowType, LowCutOff);

 // 2. Generate highpass filter at second (high) cutoff frequency
 wsfirHP(H2, WindowType, HighCutOff);

 // 3. Add the 2 filters together
 for i:=0 to Length(H)-1
 do H[i]:=H[i]+H2[i];

 SetLength(H2,0);
end;

// Generate bandpass filter
// This is done by generating a bandstop filter and spectrally inverting it
procedure wsfirBP(var H : TDoubleArray; const WindowType : TWindowType; const LowCutOff, HighCutOff : Double);
var i : Integer;
begin
 wsfirBS(H, WindowType, LowCutOff, HighCutOff); // 1. Generate bandstop filter

 // 2. Spectrally invert (negate all samples and add 1 to center sample) lowpass filter
 // = delta[n-((N-1)/2)] - h[n], in the time domain
 for i:=0 to Length(H)-1
 do H[i]:=H[i]*-1.0;
 H[(Length(H)-1) div 2]:=H[(Length(H)-1) div 2]+1.0;
end;

// Generate sinc function - used for making lowpass filter
procedure genSinc(var Sinc : TDoubleArray; const Cutoff : Double);
var i,j : Integer;
 n,k : Double;
begin
 j:=Length(Sinc)-1;
 k:=1/j;
 // Generate sinc delayed by (N-1)/2
 for i:=0 to j do
 if (i=j div 2)
 then Sinc[i]:=2.0*Cutoff
 else
 begin
 n:=i-j/2.0;
 Sinc[i]:=sin(2.0*PI*Cutoff*n)/(PI*n);
 end;
end;

// Generate window function (Gaussian)
procedure wGaussian(var W : TDoubleArray);
var i,j : Integer;
 k : Double;
begin
 j:=Length(W)-1;
 k:=1/j;
 for i:=0 to j
 do W[i]:=W[i]*(exp(-5.0/(sqr(j))*(2*i-j)*(2*i-j)));
end;

// Generate window function (Blackman-Harris)
procedure wBlackmanHarris(var W : TDoubleArray);
var i,j : Integer;
 k : Double;
begin
 j:=Length(W)-1;
 k:=1/j;
 for i:=0 to j
 do W[i]:=W[i]*(0.35875-0.48829*cos(2*PI*(i+0.5)*k)+0.14128*cos(4*PI*(i+0.5)*k)-0.01168*cos(6*PI*(i+0.5)*k));
end;

// Generate window function (Blackman)
procedure wBlackman(var W : TDoubleArray);
var i,j : Integer;
 k : Double;
begin
 j:=Length(W)-1;
 k:=1/j;
 for i:=0 to j
 do W[i]:=W[i]*(0.42-(0.5*cos(2*PI*i*k))+(0.08*cos(4*PI*i*k)));
end;

// Generate window function (Hanning)
procedure wHanning(var W : TDoubleArray);
var i,j : Integer;
 k : Double;
begin
 j:=Length(W)-1;
 k:=1/j;
 for i:=0 to j
 do W[i]:=W[i]*(0.5*(1.0-cos(2*PI*i*k)));
end;

// Generate window function (Hamming)
procedure wHamming(var W : TDoubleArray);
var i,j : Integer;
 k : Double;
begin
 j:=Length(W)-1;
 k:=1/j;
 for i:=0 to j
 do W[i]:=W[i]*(0.54-(0.46*cos(2*PI*i*k)));
end;

end.

	Date: 2007-01-06 04:23:59

	By: uh.etle.fni@yfoocs

The Hanning window is often incorrecty referred to as 'Hanning', since it was named after a guy called Julius von Hann. So it's more appropriate to call it 'Hann' window.

	Date: 2007-09-02 20:33:31

	By: Dave in sinc land

I've seen a BASIC version of the same genSinc code.
Shouldn't a 'sin(2.0*Cutoff)' be used when the divide by zero check is 0?
...
 if (i=j div 2)
 then Sinc[i]:=2.0*Cutoff
 else
 begin
 n:=i-j/2.0;
 Sinc[i]:=sin(2.0*PI*Cutoff*n)/(PI*n);
 end;
...

	Date: 2007-09-02 21:22:35

	By: Dave in sinc land

Scrap that, I've just FFT'd the response, and it appears to be correct as it was. Hey it just looked wrong o.k. ;)

	Date: 2008-09-08 00:57:52

	By: moc.liamg@olleocisuor

What do I have to do to apply this windowed sinc filter to a signal "Y" for example... what is the code for this?
Imagine signal "Y" is a stereo song which means that I have Y1 from channel 1 and Y2 from channel 2.. help me please as soon as posible because at least i want to know how to aplly the filter to any signal...

	Date: 2012-06-10 07:57:12

	By: ten.xoc@53namhsima

Here is a FIR filter that works with up to about 80 coefficients on a Sony PSP running at 280 Megahertz. The multipliers (8191.0 and 32767.0) may need to be incremented by one, or not. You need to call 'fir_filter' with the sample to process in 'sample' and the floating point coefficents in '*coefs' and how long the entire filter is in 'len' and the returned sample is a 16 bit audio (signed short) sample. When it is first run it will normalize the filter.

/* code starts here, remove spaces between the includes */
#include < math.h >
#include < string.h >
#include < stdio.h >
#include < stdlib.h >
 void normalizeCoefs(signed short *firshort, signed short *outfilter, unsigned long len)
{
 // filter gain at uniform frequency intervals
 double *g=NULL;
 double *dtemp=NULL;
 double theta, s, c, sac, sas;
 double gMax = -100.0;
 double sc = 10.0/log(10.0);
 double t = M_PI / len;
 long i=0;
 long n=len-1;
 double normFactor =0;
 g=(double*)malloc((len+1)*sizeof(double));
 dtemp=(double*)malloc((len+1)*sizeof(double));
 for (i=0; i<len; i++)
 {
 dtemp[i]=firshort[i]/32768.0;
 }
 for (i=0; i<len; i++)
 {
 theta = i*t;
 sac = 0.0;
 sas = 0.0;
 long k=0;
 for (k=0; k<len; k++)
 {
 c =cos(k*theta);
 s =sin(k*theta);
 sac += c*(dtemp[k]);
 sas += s*(dtemp[k]);
 }
 g[i] = sc*log(sac*sac + sas*sas);
 if(g[i]>gMax)
 {
 gMax=g[i];
 }
 }
 // normalise to 0 dB maximum gain
 for (i=0; i<len; i++)
 {
 g[i] -= gMax;
 }
 // normalise coefficients
 normFactor =0;pow(10.0, -0.05*gMax);
 for (i=0; i<len; i++)
 {
 dtemp[i] *= normFactor;
 }
 n=len-1;
 for (i=0; i<len; i++)
 {
 outfilter[i]=dtemp[n--]*32767.0;
 }
 free(dtemp);
 free(g);
 }

signed short generalFIR(short input, short *coefs, unsigned long len,unsigned char resetit)
{

 static signed short *delay_line=NULL;
 static unsigned int first=1;
 static signed long reacc=0;
 unsigned long filtcnt=0;
 static int consumer=1;
 static int producer=0;
 unsigned long tx=0;
 if(resetit==1)
 {
 first=1;
 }
 if(first==1)
 {
 if(delay_line!=NULL)
 free(delay_line);
 producer=0;
 consumer=1;
 delay_line=(signed short*)malloc(reallen*sizeof(signed short));
 first=0;
 }
 reacc=0;
 delay_line[producer++]=input;
 if(producer>len-1)
 {
 producer-=len;
 }
 int filtptr=consumer;
 for(tx=0;tx<len;tx++)
 {
 reacc+=(delay_line[filtptr++]*coefs[tx]);
 if(filtptr>len-1)
 {
 filtptr-=len;
 }

 }
 consumer++;
 if(consumer>len-1)
 {
 consumer-=len;
 }
 reacc = reacc >> 15;
 if(reacc<-32768)
 reacc= -32768;
 if(reacc>32767)
 reacc=32767;
 return (signed short)reacc;
}

signed short fir_filter(signed short sample,double *coefs,unsigned long len)
{
 static unsigned char first=1;
 static signed short *newfir=NULL;
 if(first==1)
 {
 unsigned long i=0;
 if(newfir!=NULL)
 {
 free(newfir);
 newfir=NULL;
 }
 newfir=(signed short*)malloc((filterorder+1) * sizeof(signed short));
 if(newfir==NULL)
 {
 return 0;
 }
 for(k=0;k<len;k++)
 {
 newfir[k]=coefs[k] * 8191.0;
 }
 normalizeCoefs(newfir,newfir,len);
 generalFIR(0,newfir,len,1);
 first=0;
 }
 return generalFIR(sample,newfir,len,0);
}

Zoelzer biquad filters

	Author or source: Udo Zoelzer: Digital Audio Signal Processing (John Wiley & Sons, ISBN 0 471 97226 6), Chris Townsend

	Type: biquad IIR

	Created: 2002-01-17 02:13:13

notes

Here's the formulas for the Low Pass, Peaking, and Low Shelf, which should
cover the basics. I tried to convert the formulas so they are little more consistent.
Also, the Zolzer low pass/shelf formulas didn't have adjustable Q, so I added that for
consistency with Roberts formulas as well. I think someone may want to check that I did
it right.
------------ Chris Townsend
I mistranscribed the low shelf cut formulas.
Hopefully this is correct. Thanks to James McCartney for noticing.
------------ Chris Townsend

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	omega = 2*PI*frequency/sample_rate

K=tan(omega/2)
Q=Quality Factor
V=gain

LPF: b0 = K^2
 b1 = 2*K^2
 b2 = K^2
 a0 = 1 + K/Q + K^2
 a1 = 2*(K^2 - 1)
 a2 = 1 - K/Q + K^2

peakingEQ:
 boost:
 b0 = 1 + V*K/Q + K^2
 b1 = 2*(K^2 - 1)
 b2 = 1 - V*K/Q + K^2
 a0 = 1 + K/Q + K^2
 a1 = 2*(K^2 - 1)
 a2 = 1 - K/Q + K^2

 cut:
 b0 = 1 + K/Q + K^2
 b1 = 2*(K^2 - 1)
 b2 = 1 - K/Q + K^2
 a0 = 1 + V*K/Q + K^2
 a1 = 2*(K^2 - 1)
 a2 = 1 - V*K/Q + K^2

lowShelf:
 boost:
 b0 = 1 + sqrt(2*V)*K + V*K^2
 b1 = 2*(V*K^2 - 1)
 b2 = 1 - sqrt(2*V)*K + V*K^2
 a0 = 1 + K/Q + K^2
 a1 = 2*(K^2 - 1)
 a2 = 1 - K/Q + K^2

 cut:
 b0 = 1 + K/Q + K^2
 b1 = 2*(K^2 - 1)
 b2 = 1 - K/Q + K^2
 a0 = 1 + sqrt(2*V)*K + V*K^2
 a1 = 2*(v*K^2 - 1)
 a2 = 1 - sqrt(2*V)*K + V*K^2

Comments

	Date: 2002-04-11 10:33:20

	By: moc.oohay@bdorezlangis

I get a different result for the low-shelf boost with parametric control.
Zolzer builds his lp shelf from a pair of poles and a pair of zeros at:
poles = Q(-1 +- j)
zeros = sqrt(V)Q(-1 +- j)
Where (in the book) Q=1/sqrt(2)
So,
 s^2 + 2sqrt(V)Qs + 2VQ^2
H(s) = ------------------------
 s^2 + 2Qs +2Q^2

If you analyse this in terms of:
H(s) = LPF(s) + 1, it sort of falls apart, as we've gained a zero in the LPF. (as does zolzers)

Then, if we bilinear transform that, we get:

a0= 1 + 2*sqrt(V)*Q*K + 2*V*Q^2*K^2
a1= 2 (2*V*Q^2*K^2 - 1)
a2= 1 - 2*sqrt(V)*Q*K + 2*V*Q^2*K^2
b0= 1 + 2*Q*K + 2*Q^2*K^2
b1= 2 (2*Q^2*K^2 - 1)
b2= 1 - 2*Q*K + 2*Q^2*K^2

For:
H(z) = a0z^2 + a1z +a2 / b0z^2 + b1z + b2

Which, i /think/ is right...

Dave.

	Date: 2002-04-13 08:14:38

	By: moc.oohay@bdorezlangis

Very sorry, I interpreted Zolzer's s-plane poles as z-plane poles. Too much digital stuff.

After getting back to grips with s-plane maths :) and much graphing to test that it's right, I still get slightly different results.

b0 = 1 + sqrt(V)*K/Q + V*K^2
b1 = 2*(V*K^2 - 1)
b2 = 1 - sqrt(V)*K/Q + V*K^2
a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2
The way the filter works is to have two poles on a unit circle around the origin in the s-plane, and two zeros that start at the poles at V0=1, and move outwards. The above co-efficients represent that. Chris's original results put the poles in the right place, but put the zeros at the location where the poles would be if they were butterworth, and move out from there - yielding some rather strange results...

But I've graphed that extensively, and it works fine now :)

Dave.

	Date: 2005-01-17 07:21:21

	By: asynth(at)io(dot)com

Once you divide through by a0, the Zoelzer LPF gives coefficient values that are _identical_ to the RBJ LPF.
This one is a cheaper formulation because there is only one transcendental function call (tan) instead of two (sin, cos) for RBJ.
-- james mccartney

	Date: 2005-01-18 02:33:04

	By: asynth(at)io(dot)com

Actually, sin and cos are pretty cheap when done via taylor series, so I take that last bit back.
-- james mccartney

	Date: 2005-05-04 14:23:01

	By: se.arret@htrehgraknu

Anybody know the formulation for Band Pass, High Pass and High shelf ?

	Date: 2005-05-04 16:57:08

	By: ed.luosfosruoivas@naitsirhC

Have a look at tobybear's Filter Explorer: http://www.tobybear.de/p_filterexp.html

Usually you can derivate a highpass from a lowpass and vice versa.

	Date: 2005-05-05 11:15:46

	By: se.arret@htrehgraknu

Thanks Christian, lots of things solved now !!

Unfortunately, Bandpass continues missing. I don't know if it's really posible to obtain a Bandpass filter out of this (my filters math knowlegde isn't so deep), but i asked for it because would be nice to have the complete set of Zoeltzer filters

I supose thta YOU can derive one from another as you stated, but this is not my case. Anyway, lots of thanks for your help

	Date: 2005-05-20 21:04:10

	By: moc.noitanigamioidua@jbr

>Actually, sin and cos are pretty cheap when done via taylor series, so I take that last bit back

also, James, the sin() and cos() are less of a problem for implementing in a fixed-point context. tan() is a bitch.

r b-j

	Date: 2006-06-27 17:32:53

	By: uh.etle.fni@yfoocs

Highpass version:

HPF:
b0 = 1 - K^2
b1 = -2*K^2
b2 = 1 - K^2
a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

Bandpass version:

BPF1 (peak gain = Q):
b0 = K
b1 = 0
b2 = -K
a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

BPF2 (peak gain = zero):

b0 = K/Q
b1 = 0
b2 = -K/Q
a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

Couldn't figure out the notch coeffs yet...

-- peter schoffhauzer

	Date: 2006-06-28 00:07:25

	By: uh.etle.fni@yfoocs

Got the notch too finally ;)

Notch

b0 = 1 + K^2
b1 = 2*(K^2 - 1)
b2 = 1 + K^2
a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

The HPF seems to have an error in the previous post. The correct HPF version:

HPF:
b0 = 1 + K/Q
b1 = -2
b2 = 1 - K/Q
a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

Hopefully it works now. Anyone confirms?
The set is complete now. Happy coding :)

-- peter schoffhauzer

	Date: 2006-06-28 20:22:23

	By: uh.etle.fni@yfoocs

For sake of completeness ;)

Allpass:

b0 = 1 - K/Q + K^2
b1 = 2*(K^2 - 1)
b2 = 1
a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

-- peter schoffhauzer

	Date: 2006-06-30 00:59:04

	By: ed.luosfosruoivas@naitsirhC

What was wrong with the first version:

HPF:
b0 = 1 - K^2
b1 = -2 (!!)
b2 = 1 - K^2
a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

you only have to delete K^2. In the other version the cutoff frequency depends on the Q!

	Date: 2006-06-30 01:50:50

	By: ed.luosfosruoivas@naitsirhC

Also the Allpass should be symmetrical:

b0 = 1 - K/Q + K^2
b1 = 2*(K^2 - 1)
b2 = 1 + K/Q + K^2 (!!)
a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

If you divide by a0 (to reduce a coefficient) b2 will get 1 of course.

	Date: 2006-06-30 11:33:24

	By: uh.etle.fni@yfoocs

Ah, thanks for the allpass correction! I used TobyBear Filter Explorer, where I see only 5 coeffs instead of six, that was the source of confusion.

However, the highpass is still not perfect. In my 2nd version, the cutoff is not dependent of Q, because the cutoff is determined by the pole positions, which are set by a1 and a2. Instead, as the zero positions change according to Q, the cutoff slope varies. So it has an interesting behaviour, for low Qs it has a 6dB/Oct slope, for infinite resonance, the slope becomes 12dB/Oct.

However, with your suggested HPF version, I got only a strange highshelf-like filter. So here is my 3rd version, which I hope works fine:

HPF:
b0 = 1
b1 = -2
b2 = 1
a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

Quite simple isn't it? ;)

Cheers
Peter

	Date: 2006-06-30 12:25:36

	By: uh.etle.fni@yfoocs

james mccartney:

Tan can also be approximated using Taylor series (approx sin and cos with Taylor, then tan(x)=sin(x)/cos(x)) well, there's a heavy division that you can't get rid of... well, that's not true in all cases. The advantage of tan() is that you can use that tan(x) ~= x when x is small. So you can get coefficients without any transcendental functions for low and middle frequencies.

Peter

	Date: 2006-06-30 13:20:44

	By: rf.eerf@navi.neflow

I think it is possible to get a Taylor serie of the tan() function ? And it is possible to do a polynomial division of the sin & cos series to get rid of the division, you get the same thing...

	Date: 2006-07-01 00:20:28

	By: uh.etle.fni@yfoocs

Yes, there is a Taylor serie for tan(x), but near pi/2, it converges very slowly, so high frequencies is a problem again.

Let's suppose you approximate sin(x) with x-x^3/6+x^5/120, and cos(x) with 1-x^2/2+x^4/24.

So tan(x) would be

 x - x^3/6 + x^5/120

 1 - x^2/2 + x^4/24

How do you do a polynomial division for that?

	Date: 2006-07-10 19:21:54

	By: ed.luosfosruoivas@naitsirhC

Here's also a highshelf filters for completeness

K:=tan(fW0*0.5);
t2:=;
t3:=K*fQ; t6:=(V);
t5:=sqrt(2*V)*K;
t1:=1/;

b0 = (K*K + sqrt(2*V)*K + V);
b1 = 2*(K*K - V);
b2 = (K*K - sqrt(2*V)*K + V);
a0 = (K*K + K*fQ + 1)
a1 =-2*(K*K - 1);
a2 =- (K*K - K*fQ + 1);

Effects

Contents:

	2 Wave shaping things

	Alien Wah

	Band Limited PWM Generator

	Bit quantization/reduction effect

	Class for waveguide/delay effects

	Compressor

	Decimator

	Delay time calculation for reverberation

	Dynamic convolution

	ECE320 project: Reverberation w/ parameter control from PC

	Early echo’s with image-mirror technique

	Fold back distortion

	Guitar feedback

	Lo-Fi Crusher

	Lookahead Limiter

	Most simple and smooth feedback delay

	Most simple static delay

	Parallel combs delay calculation

	Phaser code

	Polynominal Waveshaper

	Reverberation Algorithms in Matlab

	Reverberation techniques

	Simple Compressor class (C++)

	Soft saturation

	Stereo Enhancer

	Stereo Field Rotation Via Transformation Matrix

	Stereo Width Control (Obtained Via Transfromation Matrix)

	Time compression-expansion using standard phase vocoder

	Transistor differential amplifier simulation

	UniVox Univibe Emulator

	Variable-hardness clipping function

	WaveShaper

	Waveshaper

	Waveshaper

	Waveshaper (simple description)

	Waveshaper :: Gloubi-boulga

2 Wave shaping things

	Author or source: Frederic Petrot

	Created: 2002-03-20 01:12:01

notes

Makes nice saturations effects that can be easilly computed using cordic
First using a atan function:
y1 using k=16
max is the max value you can reach (32767 would be a good guess)
Harmonics scale down linealy and not that fast

Second using the hyperbolic tangent function:
y2 using k=2
Harmonics scale down linealy very fast

code

	1
2
3

	y1 = (max>>1) * atan(k * x/max)

y2 = max * th(x/max)

Comments

	Date: 2006-06-26 01:12:05

	By: ten.labolgcbs@rohtlabi

Why are you calling decompiled script code?BALTHOR

	Date: 2013-01-18 02:20:59

	By: moc.liamtoh@niffumtohrepus

Yeah, atan & tanh, and really any sigmoid function, can create decent overdrive sound if
oversampled and eq'ed properly. I've used them in some of my modelers w/ good results. For
a more realistic sound, two half-wave soft clippers in series will add duty-cycle modulation
and a transfer curve similar to 3/2 tube power curve. Something like:
if(x < 0) y = -A * tanh(B * x); followed immediately by: if(y >= 0) y = -A * tanh(B * y);
Don't forget to invert each output (-A * tanh). Coefficients A & B are left to the designer.
I got this technique after reading a paper discussing a hardware implementation of this type
of circuit used in Carvin amps, here: http://www.trueaudio.com/at_eetjlm.htm (original link at
www.simulanalog.org)

Alien Wah

	Author or source: Nasca Octavian Paul (or.liame@acsanluap)

	Created: 2002-02-10 12:51:57

	Linked files: alienwah.c.

notes

I found this algoritm by "playing around" with complex numbers. Please email me your
opinions about it.

Paul.

Band Limited PWM Generator

	Author or source: rf.liamtoh@57eninres_luap

	Type: PWM generator

	Created: 2006-05-11 19:09:04

notes

This is a commented and deobfuscated version of my 1st April fish. It is based on a
tutorial code by Thierry Rochebois. I just translated and added comments.

Regards,

Paul Sernine.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

	// SelfPMpwm.cpp

// Antialised PWM oscillator

// Based on a tutorial code by Thierry Rochebois (98).
// Itself inspired by US patent 4249447 by Norio Tomisawa (81).
// Comments added/translated by P.Sernine (06).

// This program generates a 44100Hz-raw-PCM-mono-wavefile.
// It is based on Tomisawa's self-phase-modulated sinewave generators.
// Rochebois uses a common phase accumulator to feed two half-Tomisawa-
// oscillators. Each half-Tomisawa-oscillator generates a bandlimited
// sawtooth (band limitation depending on the feedback coeff B).
// These half oscillators are phase offseted according to the desired
// pulse width. They are finally combined to obtain the PW signal.
// Note: the anti-"hunting" filter is a critical feature of a good
// implementation of Tomisawa's method.
#include <math.h>
#include <stdio.h>
const float pi=3.14159265359f;
int main()
{
 float freq,dphi; //!< frequency (Hz) and phase increment(rad/sample)
 float dphif=0; //!< filtered (anti click) phase increment
 float phi=-pi; //!< phase
 float Y0=0,Y1=0; //!< feedback memories
 float PW=pi; //!< pulse width]0,2pi[
 float B=2.3f; //!< feedback coef
 FILE *f=fopen("SelfPMpwm.pcm","wb");
 // séquence ('a'=mi=E)
 // you can edit this if you prefer another melody.
 static char seq[]="aiakahiafahadfaiakahiahafahadf"; //!< sequence
 int note=sizeof(seq)-2; //!< note number in the sequence
 int octave=0; //!< octave number
 float env,envf=0; //!< envelopped and filtered envelopped
 for(int ns=0;ns<8*(sizeof(seq)-1)*44100/6;ns++)
 {
//waveform control --
 //Frequency
 //freq=27.5f*powf(2.0f,8*ns/(8*30*44100.0f/6)); //sweep
 freq=27.5f*powf(2.0f,octave+(seq[note]-'a'-5)/12.0f);
 //freq*=(1.0f+0.01f*sinf(ns*0.0015f)); //vibrato
 dphi=freq*(pi/22050.0f); // phase increment
 dphif+=0.1f*(dphi-dphif);
 //notes and enveloppe trigger
 if((ns%(44100/6))==0)
 {
 note++;
 if(note>=(sizeof(seq)-1))// sequence loop
 {
 note=0;
 octave++;
 }
 env=1; //env set
 //PW=pi*(0.4+0.5f*(rand()%1000)/1000.0f); //random PW
 }
 env*=0.9998f; // exp enveloppe
 envf+=0.1f*(env-envf); // de-clicked enveloppe
 B=1.0f; // feedback coefficient
 //try this for a nice bass sound:
 //B*=envf*envf; // feedback controlled by enveloppe
 B*=2.3f*(1-0.0001f*freq); // feedback limitation
 if(B<0)
 B=0;

//waveform generation ---
 //Common phase
 phi+=dphif; // phase increment
 if(phi>=pi)
 phi-=2*pi; // phase wrapping

 // "phase" half Tomisawa generator 0
 // B*Y0 -> self phase modulation
 float out0=cosf(phi+B*Y0); // half-output 0
 Y0=0.5f*(out0+Y0); // anti "hunting" filter

 // "phase+PW" half Tomisawa generator 1
 // B*Y1 -> self phase modulation
 // PW -> phase offset
 float out1=cosf(phi+B*Y1+PW); // half-output 1
 Y1=0.5f*(out1+Y1); // anti "hunting" filter

 // combination, enveloppe and output
 short s=short(15000.0f*(out0-out1)*envf);
 fwrite(&s,2,1,f); // file output
 }
 fclose(f);
 return 0;
}

Comments

	Date: 2006-05-23 09:31:44

	By: —

Did anyone try this?

How is the antialiasing compared to applying phaserror between two oscs in zerocross, one aliasing
the other not (but pitcherror).

Best Regards,
Arif Ove Karlsen.

	Date: 2010-02-04 08:37:45

	By: ude.notecnirp.inmula@esornep

The implementation certainly produces aliased waveforms -- they are glaring on a spectrogram
at -60dB and faint at -30dB. But it is a remarkably efficient algorithm. The aliasing can be
mitigated somewhat by using a smaller feedback coefficient.

Bit quantization/reduction effect

	Author or source: Jon Watte

	Type: Bit-level noise-generating effect

	Created: 2002-04-12 13:53:03

notes

This function, run on each sample, will emulate half the effect of running your signal
through a Speak-N-Spell or similar low-bit-depth circuitry.

The other half would come from downsampling with no aliasing control, i e replicating
every N-th sample N times in the output signal.

code

	1
2
3

	short keep_bits_from_16(short input, int keepBits) {
 return (input & (-1 << (16-keepBits)));
}

Comments

	Date: 2005-05-30 23:01:56

	By: moc.liamg@codlli

//I add some code to prevent offset.

// Code :
short keep_bits_from_16(short input, int keepBits) {
 short prevent_offset = static_cast<unsigned short>(-1) >> keepBits+1;
 input &= (-1 << (16-keepBits)));
 return input + prevent_offset
}

Class for waveguide/delay effects

	Author or source: moc.xinortceletrams@urugra

	Type: IIR filter

	Created: 2002-04-23 06:46:34

notes

Flexible-time, non-sample quantized delay , can be used for stuff like waveguide synthesis
or time-based (chorus/flanger) fx.

MAX_WG_DELAY is a constant determining MAX buffer size (in samples)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

	class cwaveguide
{
public:
 cwaveguide(){clear();}
 virtual ~cwaveguide(){};

 void clear()
 {
 counter=0;
 for(int s=0;s<MAX_WG_DELAY;s++)
 buffer[s]=0;
 }

 inline float feed(float const in,float const feedback,double const delay)
 {
 // calculate delay offset
 double back=(double)counter-delay;

 // clip lookback buffer-bound
 if(back<0.0)
 back=MAX_WG_DELAY+back;

 // compute interpolation left-floor
 int const index0=floor_int(back);

 // compute interpolation right-floor
 int index_1=index0-1;
 int index1=index0+1;
 int index2=index0+2;

 // clip interp. buffer-bound
 if(index_1<0)index_1=MAX_WG_DELAY-1;
 if(index1>=MAX_WG_DELAY)index1=0;
 if(index2>=MAX_WG_DELAY)index2=0;

 // get neighbourgh samples
 float const y_1= buffer [index_1];
 float const y0 = buffer [index0];
 float const y1 = buffer [index1];
 float const y2 = buffer [index2];

 // compute interpolation x
 float const x=(float)back-(float)index0;

 // calculate
 float const c0 = y0;
 float const c1 = 0.5f*(y1-y_1);
 float const c2 = y_1 - 2.5f*y0 + 2.0f*y1 - 0.5f*y2;
 float const c3 = 0.5f*(y2-y_1) + 1.5f*(y0-y1);

 float const output=((c3*x+c2)*x+c1)*x+c0;

 // add to delay buffer
 buffer[counter]=in+output*feedback;

 // increment delay counter
 counter++;

 // clip delay counter
 if(counter>=MAX_WG_DELAY)
 counter=0;

 // return output
 return output;
 }

 float buffer[MAX_WG_DELAY];
 int counter;
};

Compressor

	Author or source: ur.liam@cnihsalf

	Type: Hardknee compressor with RMS look-ahead envelope calculation and adjustable attack/decay

	Created: 2004-05-26 16:02:59

notes

RMS is a true way to estimate _musical_ signal energy,
our ears behaves in a same way.

to making all it work,
try this values (as is, routine accepts percents and milliseconds) for first time:

threshold = 50%
slope = 50%
RMS window width = 1 ms
lookahead = 3 ms
attack time = 0.1 ms
release time = 300 ms

This code can be significantly improved in speed by
changing RMS calculation loop to 'running summ'
(keeping the summ in 'window' -
adding next newest sample and subtracting oldest on each step)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

	void compress
 (
 float* wav_in, // signal
 int n, // N samples
 double threshold, // threshold (percents)
 double slope, // slope angle (percents)
 int sr, // sample rate (smp/sec)
 double tla, // lookahead (ms)
 double twnd, // window time (ms)
 double tatt, // attack time (ms)
 double trel // release time (ms)
)
{
 typedef float stereodata[2];
 stereodata* wav = (stereodata*) wav_in; // our stereo signal
 threshold *= 0.01; // threshold to unity (0...1)
 slope *= 0.01; // slope to unity
 tla *= 1e-3; // lookahead time to seconds
 twnd *= 1e-3; // window time to seconds
 tatt *= 1e-3; // attack time to seconds
 trel *= 1e-3; // release time to seconds

 // attack and release "per sample decay"
 double att = (tatt == 0.0) ? (0.0) : exp (-1.0 / (sr * tatt));
 double rel = (trel == 0.0) ? (0.0) : exp (-1.0 / (sr * trel));

 // envelope
 double env = 0.0;

 // sample offset to lookahead wnd start
 int lhsmp = (int) (sr * tla);

 // samples count in lookahead window
 int nrms = (int) (sr * twnd);

 // for each sample...
 for (int i = 0; i < n; ++i)
 {
 // now compute RMS
 double summ = 0;

 // for each sample in window
 for (int j = 0; j < nrms; ++j)
 {
 int lki = i + j + lhsmp;
 double smp;

 // if we in bounds of signal?
 // if so, convert to mono
 if (lki < n)
 smp = 0.5 * wav[lki][0] + 0.5 * wav[lki][1];
 else
 smp = 0.0; // if we out of bounds we just get zero in smp

 summ += smp * smp; // square em..
 }

 double rms = sqrt (summ / nrms); // root-mean-square

 // dynamic selection: attack or release?
 double theta = rms > env ? att : rel;

 // smoothing with capacitor, envelope extraction...
 // here be aware of pIV denormal numbers glitch
 env = (1.0 - theta) * rms + theta * env;

 // the very easy hard knee 1:N compressor
 double gain = 1.0;
 if (env > threshold)
 gain = gain - (env - threshold) * slope;

 // result - two hard kneed compressed channels...
 float leftchannel = wav[i][0] * gain;
 float rightchannel = wav[i][1] * gain;
 }
}

Comments

	Date: 2004-06-10 21:31:18

	By: moc.regnimmu@psd-cisum

My comments:

A rectangular window is not physical. It would make more physical sense, and be a lot cheaper, to
use a 1-pole low pass filter to do the RMS averaging. A 1-pole filter means you can lose the bounds
checks in the RMS calculation.

It does not make sense to convert to mono before squaring, you should square each channel
separately and then add them together to get the total signal power.

You might also consider whether you even need any filtering other than the attack/release filter.
You could modify the attack/release rates appropriately, place the sqrt after the attack/release,
and lose the rms averager entirely.

I don't think your compressor actually approaches a linear slope in the decibel domain. You need
a gain law more like

double gain = exp(max(0.0,log(env)-log(thresh))*slope);

Sincerely,
 Frederick Umminger

	Date: 2004-07-30 05:31:36

	By: moc.liamg@noteex

To sum up (and maybe augment) the RMS calculation method, this question and answer may be of use...

music-dsp@shoko.calarts.edu writes:
I am looking at gain processing algorithms. I haven't found much in the way of reference material on
this, any pointers? In the level detection code, if one is doing peak detection, how many samples
does one generally average over (if at all)? What kind of window size for RMS level detection?
Is the RMS level detection generally the same algo. as peak, but with a bigger window?

The peak detector can be easily implemented as a one-pole low pass, you just have modify it,
so that it tracks the peaks and gently falls down afterwards. RMS detection is done squaring
the input signal, averaging with a lowpass and taking the root afterwards.

Hope this helps.

Kind regards

Steffan Diedrichsen

DSP developer

emagic GmbH

I found the thread by searching old [music-dsp] forum posts. Hope it helps.

	Date: 2006-11-07 01:52:17

	By: gro.esabnaeco@euarg

How would you use a 1-pole lowpass filter to do RMS averaging? How do you pick a coefficient to use?

	Date: 2006-11-09 01:19:41

	By: uh.etle.fni@yfoocs

Use x = exp(-1/d), where d is the time constant in samples. A 1 pole IIR filter has an infinite
impulse response, so instead of window width, this coeff determines the time when the impulse
response reaches 36.8% of the original value.

Coeffs:
a0 = 1.0-x;
b1 = -x;

Loop:
out = a0*in - b1*tmp;
tmp = out;

-- peter schoffhauzer

	Date: 2008-11-20 08:30:28

	By: moc.361@oatuxt

I am looking at gain processing algorithms£º
There are too such sentences :
double att = (tatt == 0.0) ? (0.0) : exp (-1.0 / (sr * tatt));
double rel = (trel == 0.0) ? (0.0) : exp (-1.0 / (sr * trel));

can you tell me something about the exp (-1.0 / (sr * tatt))?

New day ~~
thanks

	Date: 2010-04-28 15:12:47

	By: moc.liamg@enin.kap

This is a useful reference, however the RMS calculations are pretty dodgy. Firstly there is a
bug where is calculates the number of samples to use:

int sr, // sample rate (smp/sec)
...
double twnd, // window time (ms)
...
// samples count in lookahead window
int nrms = (int) (sr * twnd);

The units are mixed when calculating the number of samples in the RMS window. The window time needs
to be converted to seconds before multiplying by the sample rate.

As others have mentioned the RMS calculation is also really expensive, and in my tests I found it
was pretty innacurate unless you use a LOT of samples (you basically need a (sample rate)/2 window
of samples in your RMS calculation to accurately measure the power of all frequencies).

I ended up using the 1 pole low pass filter approach suggested here, and it is a good cheap
approximation of power. I did, however, end up mulitplying it by root(2) (the RMS of a sine wave,
which seemed like a reasonable normalisation factor) in order to get it between 0 and 1, which is
a more useful range.

Another slightly more accurate way to caculate the RMS without iterating over and entire window
for each sample is to keep a running total of the squared sums of samples.

for(i = 0; i < NumSamples; ++i)
{
 NewSample = Sample[i];
 OldSample = Sample[i - RMSWindowSize];

 SquaredSum = SquaredSum + NewSample * NewSample;
 SquaredSum = SquaredSum - OldSample * OldSample;

 RMS = sqrt(SquaredSum / RMSWindowSize);

 // etc...
}

Calculating the power in the signal is definately the awkward part of this DSP!

Decimator

	Author or source: ed.bew@raeybot

	Type: Bit-reducer and sample&hold unit

	Created: 2002-11-25 18:13:49

notes

This is a simple bit and sample rate reduction code, maybe some of you can use it. The
parameters are bits (1..32) and rate (0..1, 1 is the original samplerate).
Call the function like this:
y=decimate(x);

A VST plugin implementing this algorithm (with full Delphi source code included) can be
downloaded from here:
http://tobybear.phreque.com/decimator.zip

Comments/suggestions/improvements are welcome, send them to: tobybear@web.de

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	// bits: 1..32
// rate: 0..1 (1 is original samplerate)

********** Pascal source **********
var m:longint;
 y,cnt,rate:single;

// call this at least once before calling
// decimate() the first time
procedure setparams(bits:integer;shrate:single);
begin
 m:=1 shl (bits-1);
 cnt:=1;
 rate:=shrate;
end;

function decimate(i:single):single;
begin
 cnt:=cnt+rate;
 if (cnt>1) then
 begin
 cnt:=cnt-1;
 y:=round(i*m)/m;
 end;
 result:=y;
end;

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	int bits=16;
float rate=0.5;

long int m=1<<(bits-1);
float y=0,cnt=0;

float decimate(float i)
{
 cnt+=rate;
 if (cnt>=1)
 {
 cnt-=1;
 y=(long int)(i*m)/(float)m;
 }
 return y;
}

Comments

	Date: 2002-12-03 12:44:42

	By: moc.noicratse@ajelak

Nothing wrong with that, but you can also do fractional-bit-depth decimations, allowing
smooth degradation from high bit depth to
low and back:

// something like this -- this is
// completely off the top of my head
// precalculate the quantization level
float bits; // effective bit depth
float quantum = powf(2.0f, bits);

// per sample
y = floorf(x * quantum) / quantum;

	Date: 2003-02-14 20:04:36

	By: es.yarps@fek.rd

it looks to me like the c-line

long int m=1<<(bits-1);

doesnt give the correct number of quantisation levels if the number of levels is defined as
2^bits. if bits=2 for instance, the above code line returns a bit pattern of 10 (3) and not
11 (2^2) like one would expect.

please, do correct me if im wrong.

/heatrof

Delay time calculation for reverberation

	Author or source: Andy Mucho

	Created: 2002-01-17 02:19:54

notes

This is from some notes I had scribbled down from a while back on
automatically calculating diffuse delays. Given an intial delay line gain
and time, calculate the times and feedback gain for numlines delay lines..

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	int numlines = 8;
float t1 = 50.0; // d0 time
float g1 = 0.75; // d0 gain
float rev = -3*t1 / log10 (g1);

for (int n = 0; n < numlines; ++n)
{
 float dt = t1 / pow (2, (float (n) / numlines));
 float g = pow (10, -((3*dt) / rev));
 printf ("d%d t=%.3f g=%.3f\n", n, dt, g);
}

/*
The above with t1=50.0 and g1=0.75 yields:

 d0 t=50.000 g=0.750
 d1 t=45.850 g=0.768
 d2 t=42.045 g=0.785
 d3 t=38.555 g=0.801
 d4 t=35.355 g=0.816
 d5 t=32.421 g=0.830
 d6 t=29.730 g=0.843
 d7 t=27.263 g=0.855

To go more diffuse, chuck in dual feedback paths with a one cycle delay
effectively creating a phase-shifter in the feedback path, then things get
more exciting.. Though what the optimum phase shifts would be I couldn't
tell you right now..
*/

Dynamic convolution

	Author or source: Risto Holopainen

	Type: a naive implementation in C++

	Created: 2005-06-05 22:05:19

notes

This class illustrates the use of dynamic convolution with a set of IR:s consisting of
exponentially damped sinusoids with glissando. There's lots of things to improve for
efficiency.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

	#include <cmath>

class dynaconv
{
 public:
// sr=sample rate, cf=resonance frequency,
// dp=frq sweep or nonlinearity amount
 dynaconv(const int sr, float cf, float dp);
 double operator()(double);

 private:
// steps: number of amplitude regions, L: length of impulse response
 enum {steps=258, dv=steps-2, L=200};
 double x[L];
 double h[steps][L];
 int S[L];
 double conv(double *x, int d);
};

dynaconv::dynaconv(const int sr, float cfr, float dp)
{
 for(int i=0; i<L; i++)
 x[i] = S[i] = 0;

 double sc = 6.0/L;
 double frq = twopi*cfr/sr;

// IR's initialised here.
// h[0] holds the IR for samples with lowest amplitude.
 for(int k=0; k<steps; k++)
 {
 double sum = 0;
 double theta=0;
 double w;
 for(int i=0; i<L; i++)
 {
 // IR of exp. decaying sinusoid with glissando
 h[k][i] = sin(theta)*exp(-sc*i);
 w = (double)i/L;
 theta += frq*(1 + dp*w*(k - 0.4*steps)/steps);
 sum += fabs(h[k][i]);
 }

 double norm = 1.0/sum;
 for(int i=0; i<L; i++)
 h[k][i] *= norm;
 }
}

double dynaconv::operator()(double in)
{
 double A = fabs(in);
 double a, b, w, y;
 int sel = int(dv*A);

 for(int j=L-1; j>0; j--)
 {
 x[j] = x[j-1];
 S[j] = S[j-1];
 }
 x[0] = in;
 S[0] = sel;

 if(sel == 0)
 y = conv(x, 0);

 else if(sel > 0)
 {
 a = conv(x, 0);
 b = conv(x, 1);
 w = dv*A - sel;
 y = w*a + (1-w)*b;
 }

 return y;
}

double dynaconv::conv(double *x, int d)
{
 double y=0;
 for(int i=0; i<L; i++)
 y += x[i] * h[S[i]+d][i];

 return y;
}

Comments

	Date: 2005-06-06 08:26:12

	By: ed.luosfosruoivas@naitsirhC

You can speed things up by:

a) rewriting the "double dynaconv::conv(double *x, int d)" function using Assembler, SSE and 3DNow
 routines.

b) instead of this

"else if(sel > 0)
{
a = conv(x, 0);
b = conv(x, 1);
w = dv*A - sel;
y = w*a + (1-w)*b;
}"

you can create a temp IR by fading the two impulse responses before convolution. Then you'll only
 need ONE CPU-expensive-convolution.

c) this one only works with the upper half wave!

d) only nonlinear components can be modeled. For time-variant modeling (compressor/limiter) you'll
 need more than this.

e) the algo is proteced by a patent. But it's easy to find more efficient ways, which aren't
 protected by the patent.

With my implementation i can fold up to 4000 Samples (IR) in realtime on my machine.

	Date: 2005-07-20 13:52:49

	By: d.tniop@noitcerroc

Correction to d:

d) only time invariant nonlinear components can be modeled; and then adequate memory must be used.
 Compressors/Limiters can be modelled, but the memory requirements will be somewhat frightening.
 Time-variant systems, such as flangers, phasors, and sub-harmonic generators (i.e. anything
 with an internal clock) will need more than this.

ECE320 project: Reverberation w/ parameter control from PC

	Author or source: Brahim Hamadicharef (project by Hua Zheng and Shobhit Jain)

	Created: 2002-05-24 13:34:45

	Linked files: rev.txt.

notes

rev.asm
ECE320 project: Reverberation w/ parameter control from PC
Hua Zheng and Shobhit Jain
12/02/98 ~ 12/11/98
(se linked file)

Early echo’s with image-mirror technique

	Author or source: Donald Schulz

	Created: 2002-02-11 17:35:48

	Linked files: early_echo.c.

	Linked files: early_echo_eng.c.

notes

(see linked files)
Donald Schulz's code for computing early echoes using the image-mirror method. There's an
english and a german version.

Fold back distortion

	Author or source: ed.bpu@eriflleh

	Type: distortion

	Created: 2005-05-28 19:11:06

notes

a simple fold-back distortion filter.
if the signal exceeds the given threshold-level, it mirrors at the positive/negative
threshold-border as long as the singal lies in the legal range (-threshold..+threshold).
there is no range limit, so inputs doesn't need to be in -1..+1 scale.
threshold should be >0
depending on use (low thresholds) it makes sense to rescale the input to full amplitude

performs approximately the following code
(just without the loop)

while (in>threshold || in<-threshold)
{
 // mirror at positive threshold
 if (in>threshold) in= threshold - (in-threshold);
 // mirror at negative threshold
 if (in<-threshold) in= -threshold + (-threshold-in);
}

code

	1
2
3
4
5
6
7
8

	float foldback(float in, float threshold)
{
 if (in>threshold || in<-threshold)
 {
 in= fabs(fabs(fmod(in - threshold, threshold*4)) - threshold*2) - threshold;
 }
 return in;
}

Guitar feedback

	Author or source: Sean Costello

	Created: 2002-02-10 20:01:07

notes

It is fairly simple to simulate guitar feedback with a simple Karplus-Strong algorithm
(this was described in a CMJ article in the early 90's):

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	Run the output of the Karplus-Strong delay lines into a nonlinear shaping function for distortion
(i.e. 6 parallel delay lines for 6 strings, going into 1 nonlinear shaping function that simulates
an overdriven amplifier, fuzzbox, etc.);

Run part of the output into a delay line, to simulate the distance from the amplifier to the
"strings";

The delay line feeds back into the Karplus-Strong delay lines. By controlling the amount of the
output fed into the delay line, and the length of the delay line, you can control the intensity
and pitch of the feedback note.

Comments

	Date: 2016-06-10 19:59:36

	By: moc.liamg@1a7102egroj

'NO esta completo falta algo, no se, si es el filtro biquad

Public Function karplustrong_b1(PNumSamples As Long) As Integer()
Dim x() As Single
Dim y() As Single
Dim n As Long
Dim Num As Long
Dim ArrResp() As Integer
Dim C As Single
Dim Fs As Long
Dim fP As Single
Dim amplitud As Long
Dim i As Long
Dim valor As Single
Dim Ind1 As Long
Dim Ind2 As Long
Dim suma As Single
Dim media As Single
Dim valorsigno As Single

 Fs = 44100
 fP = 400 '400hz pitch frequency

 'Num = (Fs / Fp)

 ReDim x(PNumSamples)
 ReDim y(PNumSamples)

 'generar numeros aleatorios rango 0 a 1
 'iniciar numeros aleatorios
 Randomize
 suma = 0
 For i = 0 To PNumSamples
 valor = Rnd * 1 - 0.5

 'valorsigno = Rnd * 1
 'If valorsigno > 0.5 Then valor = -valor

 x(i) = valor
 suma = suma + valor
 Next

 media = suma / PNumSamples
 'media = 1

 'calcular la media y dividir
 For i = 0 To PNumSamples
 valor = x(i)
 x(i) = valor / media
 Next

 Num = PNumSamples - 1
 C = 0.5

 For n = 0 To PNumSamples - 1
 'Ind1 = Abs(n - Num)
 'Ind2 = Abs(n - (Num + 1))
 Ind2 = Abs((n))
 Ind2 = Abs((n + 1) Mod Num) / 2
 y(n) = x(n) + C * (y(Ind1) + y(Ind2))
 Next

 ReDim ArrResp(PNumSamples)
 amplitud = 1000
 For i = 0 To Num
 ArrResp(i) = RangoInteger(y(i) * amplitud)
 Next

 karplustrong_b1 = ArrResp
End Function

Lo-Fi Crusher

	Author or source: David Lowenfels

	Type: Quantizer / Decimator with smooth control

	Created: 2003-04-01 15:34:40

notes

Yet another bitcrusher algorithm. But this one has smooth parameter control.

Normfreq goes from 0 to 1.0; (freq/samplerate)
Input is assumed to be between 0 and 1.
Output gain is greater than unity when bits < 1.0;

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	function output = crusher(input, normfreq, bits);
 step = 1/2^(bits);
 phasor = 0;
 last = 0;

 for i = 1:length(input)
 phasor = phasor + normfreq;
 if (phasor >= 1.0)
 phasor = phasor - 1.0;
 last = step * floor(input(i)/step + 0.5); %quantize
 end
 output(i) = last; %sample and hold
 end
end

Comments

	Date: 2004-06-16 21:10:39

	By: moc.liamtoh@132197kk

what's the "bits" here? I tried to run the code, it seems it's a dead loop here, can not
figure out why

	Date: 2005-10-26 23:25:13

	By: dfl

bits goes from 1 to 16

	Date: 2016-03-19 02:47:47

	By: moc.liamg@tnemniatretnEesneS2

I'm having trouble with the code as well. Is there something I'm missing?

Lookahead Limiter

	Author or source: ed.luosfosruoivas@naitsirhC

	Type: Limiter

	Created: 2009-11-16 08:45:47

notes

I've been thinking about this for a long time and this is the best I came up with so far.
I might be all wrong, but according to some simulations this looks quite nice (as I want
it to be).

The below algorithm is written in prosa. It's up to you to transfer it into code.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	Ingredients:

1 circular buffers (size of the look ahead time)
2 circular buffers (half the size of the look ahead time)
4 parameters ('Lookahead Time [s]', 'Input Gain [dB]', 'Output Gain [dB]' and 'Release Time [s])
a handfull state variables

Recipe:

0. Make sure all buffers are properly initialized and do not contain any dirt (pure zeros are what
we need).

For each sample do the following procedure:

1. Store current sample in the lookahead time circular buffer, for later use (and retrieve the value
that falls out as the preliminary 'Output')

2. Find maximum within this circular buffer. This can also be implemented efficiently with an hold
algorithm.

3. Gain this maximum by the 'Input Gain [dB]' parameter

4. Calculate necessary gain reduction factor (=1, if no gain reduction takes place and <1 for any
signal above 0 dBFS)

5. Eventually subtract this value from 1 for a better numerical stability. (MUST BE UNDONE LATER!)

6. Add this gain reduction value to the first of the smaller circular buffers to calculate the short
time sum (add this value to a sum and subtract the value that felt out of the circular buffer).

7. normalize the sum by dividing it by the length of the circular buffer (-> / ('Lookahead Time'
[samples] / 2))

8. repeat step 6 & 7 with this sum in the second circular buffer. The reason for these steps is to
transform dirac impulses to a triangle (dirac -> rect -> triangle)

9. apply the release time (release time -> release slew rate 'factor' -> multiply by that factor) to
the 'Maximum Gain Reduction' state variable

10. check whether the currently calculated gain reduction is higher than the 'Maximum Gain Reduction'.
If so, replace!

11. eventually remove (1 - x) from step 5 here

12. calculate effective gain reduction by the above value gained by input and output gain.

13. Apply this gain reduction to the preliminary 'Output' from step 1

Repeat the above procedure (step 1-13) for all samples!

Most simple and smooth feedback delay

	Author or source: moc.liamtoh@sisehtnysorpitna

	Type: Feedback delay

	Created: 2003-09-03 12:58:52

notes

fDlyTime = delay time parameter (0-1)

i = input index
j = delay index

code

	1
2
3
4
5
6
7
8
9

	if(i >= SampleRate)
 i = 0;

j = i - (fDlyTime * SampleRate);

if(j < 0)
 j += SampleRate;

Output = DlyBuffer[i++] = Input + (DlyBuffer[j] * fFeedback);

Comments

	Date: 2003-09-03 13:25:47

	By: moc.liamtoh@sisehtnysorpitna

// This algo didn't seem to work on testing again, just change:
// ---
Output = DlyBuffer[i++] = Input + (DlyBuffer[j] * fFeedback);
// ---
// to
// ---
Output = DlyBuffer[i] = Input + (DlyBuffer[j] * fFeedback);

i++;
// ---
// and it will work fine.

	Date: 2003-09-08 12:07:22

	By: moc.liamtoh@sisehtnysorpitna

// Here's a more clear source. both BufferSize and MaxDlyTime are amounts of samples. BufferSize
// should best be 2*MaxDlyTime to have proper sound.
// -
if(i >= BufferSize)
 i = 0;

j = i - (fDlyTime * MaxDlyTime);

if(j < 0)
 j += BufferSize;

Output = DlyBuffer[i] = Input + (DlyBuffer[j] * fFeedback);

i++;

Most simple static delay

	Author or source: moc.liamtoh@sisehtnysorpitna

	Type: Static delay

	Created: 2003-09-02 06:21:15

notes

This is the most simple static delay (just delays the input sound an amount of samples).
Very useful for newbies also probably very easy to change in a feedback delay (for comb
filters for example).

Note: fDlyTime is the delay time parameter (0 to 1)

i = input index
j = output index

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	if(i >= SampleRate)
 i = 0;

DlyBuffer[i] = Input;

j = i - (fDlyTime * SampleRate);

i++;

if(j < 0)
 j = SampleRate + j;

Output = DlyBuffer[j];

Comments

	Date: 2003-09-02 09:17:47

	By: moc.liamtoh@sisehtnysorpitna

Another note: The delay time will be 0 if fDlyTime is 0 or 1.

	Date: 2003-09-08 12:21:20

	By: gro.ekaf@suomynona

// I think you should be careful with mixing floats and integers that way (error-prone,
// slow float-to-int conversions, etc).

// This should also work (haven't checked, not best way of doing it):

// ... (initializing) ..

float numSecondsDelay = 0.3f;
int numSamplesDelay_ = (int)(numSecondsDelay * sampleRate); // maybe want to round to an integer instead of truncating..

float *buffer_ = new float[2*numSamplesDelay];

for (int i = 0; i < numSamplesDelay_; ++i)
{
 buffer_[i] = 0.f;
}

int readPtr_ = 0;
int writePtr_ = numSamplesDelay_;

// ... (processing) ...

for (i = each sample)
{
 buffer_[writePtr_] = input[i];
 output[i] = buffer_[readPtr_];

 ++writePtr_;
 if (writePtr_ >= 2*numSamplesDelay_)
 writePtr_ = 0;

 ++readPtr_;
 if (readPtr_ >= 2*numSamplesDelay_)
 readPtr_ = 0;
}

	Date: 2004-08-24 19:31:45

	By: moc.liamg@noteex

I may be missing something, but I think it gets a little simpler than the previous two examples.
The difference in result is that actual delay will be 1 if d is 0 or 1.

i = input/output index
d = delay (in samples)

Code:

out = buffer[i];
buffer[i] = in;
i++;
if(i >= delay) i = 0;

	Date: 2005-12-18 02:35:00

	By: moc.liamg@noteex

or even in three lines...

out = buffer[i];
buffer[i++] = in;
if(i >= delay) i = 0;

	Date: 2006-12-30 16:29:07

	By: ku.oc.etativarg-jd@etativarg

The only problem with this implementation, is that it is not really an audio effect! all this
will do is to delay the input signal by a given number of samples! ...why would you ever want
to do that? ...this would only ever work if you had a DSP and speakers both connected to the
audio source and run them at the same time, so the speakers would be playing the original sorce
and the DSP containing the delayed source connected to another set of speakers! this is not
really an audio efffect!

...Here is a pseudo code example of a delay effect that will mix both the original sound with
the delayed sound:

Pseudo Code implementation for simple delay:
 - This implementation will put the current audio signal to the
 left channel and the delayed audio signal to the right channel.
 this is suitable for any stereo codec!

delay_function {

 left_channel // for stereo left
 right_channel // for stereo right
 mono // mono representation of stereo input
 delay_time // amount of time to delay input
 counter = 0 // counter

 //setup an array that is the same length as the maximum delay time:
 delay_array[max delay time] // array containing delayed data

 // convert stereo to mono:
 (left_channel + right_channel) / 2

 // initalise time to delay signal - maybe input from user
 delay_time = x

 if (delay_time = 0){
 left_out = mono
 right_out = mono
 }
 else {
 // put current input data to left channel:
 left_out = mono
 // put oldest delayed input data to right channel:
 right_out = delay_array[index]

 // overwrite with newest input:
 delay_array[index] = mono;

 // is index at end of delay buffer? if not increment, else set to zero
 if (index < delay_time) index++
 else index = 0
 }

}

Parallel combs delay calculation

	Author or source: Juhana Sadeharju (if.tenuf.cin@aihuok)

	Created: 2002-05-23 19:49:40

notes

 This formula can be found from a patent related to parallel combs structure. The
formula places the first echoes coming out of parallel combs to uniformly distributed
sequence. If T_ ,...,T_n are the delay lines in increasing order, the formula can be
derived by setting T_(k-1)/T_k = Constant and T_n/(2*T_1) = Constant, where 2*T_1 is the
echo coming just after the echo T_n.
 I figured this out myself as it is not told in the patent. The formula is not the best
which one can come up. I use a search method to find echo sequences which are uniform
enough for long enough time. The formula is uniform for a short time only.
 The formula doesn't work good for series allpass and FDN structures, for which a
similar formula can be derived with the same idea. The search method works for these
structures as well.

Phaser code

	Author or source: Ross Bencina

	Created: 2002-02-11 17:41:53

	Linked files: phaser.cpp.

notes

(see linked file)

Comments

	Date: 2005-06-01 22:48:17

	By: ed.luosfosruoivas@naitsirhC

// Delphi / Object Pascal Translation:
// -----------------------------------

unit Phaser;

// Still not efficient, but avoiding denormalisation.

interface

type
 TAllPass=class(TObject)
 private
 fDelay : Single;
 fA1, fZM1 : Single;
 fSampleRate : Single;
 procedure SetDelay(v:Single);
 public
 constructor Create;
 destructor Destroy; override;
 function Process(const x:single):single;
 property SampleRate : Single read fSampleRate write fSampleRate;
 property Delay: Single read fDelay write SetDelay;
 end;

 TPhaser=class(TObject)
 private
 fZM1 : Single;
 fDepth : Single;
 fLFOInc : Single;
 fLFOPhase : Single;
 fFeedBack : Single;
 fRate : Single;
 fMinimum: Single;
 fMaximum: Single;
 fMin: Single;
 fMax: Single;
 fSampleRate : Single;
 fAllpassDelay: array[0..5] of TAllPass;
 procedure SetSampleRate(v:Single);
 procedure SetMinimum(v:Single);
 procedure SetMaximum(v:Single);
 procedure SetRate(v:Single);
 procedure Calculate;
 public
 constructor Create;
 destructor Destroy; override;
 function Process(const x:single):single;
 property SampleRate : Single read fSampleRate write SetSampleRate;
 property Depth: Single read fDepth write fDepth; //0..1
 property Feedback: Single read fFeedback write fFeedback; // 0..<1
 property Minimum: Single read fMin write SetMinimum;
 property Maximum: Single read fMax write SetMaximum;
 property Rate: Single read fRate write SetRate;
 end;

implementation

uses DDSPUtils;

const kDenorm=1E-25;

constructor TAllpass.Create;
begin
 inherited;
 fA1:=0;
 fZM1:=0;
end;

destructor TAllpass.Destroy;
begin
 inherited;
end;

function TAllpass.Process(const x:single):single;
begin
 Result:=x*-fA1+fZM1;
 fZM1:=Result*fA1+x;
end;

procedure TAllpass.SetDelay(v:Single);
begin
 fDelay:=v;
 fA1:=(1-v)/(1+v);
end;

constructor TPhaser.Create;
var i : Integer;
begin
 inherited;
 fSampleRate:=44100;
 fFeedBack:=0.7;
 fLFOPhase:=0;
 fDepth:=1;
 fZM1:=0;
 Minimum:=440;
 Maximum:=1600;
 Rate:=5;
 for i:=0 to Length(fAllpassDelay)-1
 do fAllpassDelay[i]:=TAllpass.Create;
end;

destructor TPhaser.Destroy;
var i : Integer;
begin
 for i:=0 to Length(fAllpassDelay)-1
 do fAllpassDelay[i].Free;
 inherited;
end;

procedure TPhaser.SetRate(v:Single);
begin
 fLFOInc:=2*Pi*(v/SampleRate);
end;

procedure TPhaser.Calculate;
begin
 fMin:= fMinimum / (fSampleRate/2);
 fMax:= fMinimum / (fSampleRate/2);
end;

procedure TPhaser.SetMinimum(v:Single);
begin
 fMinimum:=v;
 Calculate;
end;

procedure TPhaser.SetMaximum(v:Single);
begin
 fMaximum:=v;
 Calculate;
end;

function TPhaser.Process(const x:single):single;
var d: Single;
 i: Integer;
begin
 //calculate and update phaser sweep lfo...
 d := fMin + (fMax-fMin) * ((sin(fLFOPhase)+1)/2);
 fLFOPhase := fLFOPhase + fLFOInc;
 if fLFOPhase>=Pi*2
 then fLFOPhase:=fLFOPhase-Pi*2;

 //update filter coeffs
 for i:=0 to 5 do fAllpassDelay[i].Delay:=d;

 //calculate output
 Result:= fAllpassDelay[0].Process(
 fAllpassDelay[1].Process(
 fAllpassDelay[2].Process(
 fAllpassDelay[3].Process(
 fAllpassDelay[4].Process(
 fAllpassDelay[5].Process(kDenorm + x + fZM1 * fFeedBack))))));
 fZM1:=tanh2a(Result);

 Result:=tanh2a(1.4*(x + Result * fDepth));
end;

procedure TPhaser.SetSampleRate(v:Single);
begin
 fSampleRate:=v;
end;

end.

	Date: 2005-06-01 22:51:25

	By: ed.luosfosruoivas@naitsirhC

Ups, forgot to remove my special, magic incredients "tanh2a(1.4*(". It's just
to make the sound even warmer.

The frequency range i used for Minimum and Maximum is 0..22000. But I believe there
is still an error in that formula. The input range doesn't matter (if you remove my special
incredient), because it is a linear system.

	Date: 2005-06-05 21:40:35

	By: moc.yddaht@yddaht

// I thought I already posted this but here's my interpretation for Delphi and KOL.
// The reason I repost this, is that it is rather efficient and has no denormal problems.

unit Phaser;
{

 Unit: Phaser
 purpose: Phaser is a six stage phase shifter, intended to reproduce the
 sound of a traditional analogue phaser effect.
 Author: Thaddy de Koning, based on a musicdsp.pdf C++ Phaser by
 Ross Bencina.http://www.musicdsp.org/musicdsp.pdf
 Copyright: This version (c) 2003, Thaddy de Koning
 Copyrighted Freeware

 Remarks: his implementation uses six first order all-pass filters in
 series, with delay time modulated by a sinusoidal.
 This implementation was created to be clear, not efficient.
 Obvious modifications include using a table lookup for the lfo,
 not updating the filter delay times every sample, and not
 tuning all of the filters to the same delay time.

 It sounds sensationally good!
}

interface

uses Kol, AudioUtils, SimpleAllpass;

type
 PPhaser = ^TPhaser;
 TPhaser = object(Tobj)
 private
 FSamplerate: single;
 FFeedback: single;
 FlfoPhase: single;
 FDepth: single;
 FOldOutput: single;
 FMinDelta: single;
 FMaxDelta: single;
 FLfoStep: single;
 FAllpDelays: array[0..5] of PAllpassdelay;
 FLowFrequency: single;
 FHighFrequency: single;
 procedure SetRate(TheRate: single); // cps
 procedure SetFeedback(TheFeedback: single); // 0 -> <1.
 procedure SetDepth(TheDepth: single);
 procedure SetHighFrequency(const Value: single);
 procedure SetLowFrequency(const Value: single); // 0 -> 1.
 procedure SetRange(LowFreq, HighFreq: single); // Hz
 public
 destructor Destroy; virtual;
 function Process(inSamp: single): single;
 property Rate: single write setrate;//In Cycles per second
 property Depth: single read Fdepth write setdepth;//0.. 1
 property Feedback: single read FFeedback write setfeedback; //0..< 1
 property Samplerate: single read Fsamplerate write Fsamplerate;
 property LowFrequency: single read FLowFrequency write SetLowFrequency;
 property HighFrequency: single read FHighFrequency write SetHighFrequency;
 end;

function NewPhaser: PPhaser;

implementation

{ TPhaser }
function NewPhaser: PPhaser;
var
 i: integer;
begin
 New(Result, Create);
 with Result^ do
 begin
 Fsamplerate := 44100;
 FFeedback := 0.7;
 FlfoPhase := 0;
 Fdepth := 1;
 FOldOutput := 0;
 setrange(440,1720);
 setrate(0.5);
 for i := 0 to 5 do
 FAllpDelays[i] := NewAllpassDelay;
 end;
end;

destructor TPhaser.Destroy;
var
 i: integer;
begin
 for i := 5 downto 0 do FAllpDelays[i].Free;
 inherited;
end;

procedure TPhaser.SetDepth(TheDepth: single); // 0 -> 1.
begin
 Fdepth := TheDepth;
end;

procedure TPhaser.SetFeedback(TheFeedback: single);//0..1;
begin
 FFeedback := TheFeedback;
end;

procedure TPhaser.SetRange(LowFreq, HighFreq: single);
begin
 FMinDelta := LowFreq / (FsampleRate / 2);
 FMaxDelta := HighFreq / (FsampleRate / 2);
end;

procedure TPhaser.SetRate(TheRate: single);
begin
 FLfoStep := 2 * _PI * (Therate / FsampleRate);
end;

const
 _1:single=1;
 _2:single=2;
function TPhaser.Process(inSamp: single): single;
var
 Delaytime, Output: single;
 i: integer;
begin

 //calculate and Process phaser sweep lfo...
 Delaytime := FMinDelta + (FMaxDelta - FMinDelta) * ((sin(FlfoPhase) + 1) / 2);
 FlfoPhase := FlfoPhase + FLfoStep;
 if (FlfoPhase >= _PI * 2) then
 FlfoPhase := FlfoPhase - _PI * 2;
 //Process filter coeffs
 for i := 0 to 5 do
 FAllpDelays[i].setdelay(Delaytime);
 //calculate output
 Output := FAllpDelays[0].Process(FAllpDelays[1].Process
 (FAllpDelays[2].Process(FAllpDelays[3].Process(FAllpDelays[4].Process
 (FAllpDelays[5].Process(inSamp + FOldOutput * FFeedback))))));
 FOldOutput := Output;
 Result := kDenorm + inSamp + Output * Fdepth;
end;

procedure TPhaser.SetHighFrequency(const Value: single);
begin
 FHighFrequency := Value;
 setrange(FlowFrequency, FHighFrequency);
end;

procedure TPhaser.SetLowFrequency(const Value: single);
begin
 FLowFrequency := Value;
 setrange(FlowFrequency, FHighFrequency);
end;

end.

	Date: 2005-06-05 21:44:47

	By: moc.yddaht@yddaht

// And here the allpass:
unit SimpleAllpass;
{
 Unit: SimpleAllpass
 purpose: Simple allpass delay for creating reverbs and phasing/flanging
 Author:
 Copyright:
 Remarks:
}
interface
uses kol, audioutils;

type
 PAllpassDelay = ^TAllpassDelay;
 TAllpassdelay = object(Tobj)
 protected
 Fa1,
 Fzm1: single;
 public
 procedure SetDelay(delay: single);//sample delay time
 function Process(inSamp: single): single;
 end;

function NewAllpassDelay: PAllpassDelay;

implementation

function NewAllpassDelay: PAllpassDelay;
begin
 New(Result, Create);
 with Result^ do
 begin
 Fa1 := 0;
 Fzm1 := 0;
 end;
end;

function TallpassDelay.Process(Insamp: single): single;
begin
 Result := kDenorm+inSamp * -Fa1 + Fzm1;
 Fzm1 := Result * Fa1 + inSamp + kDenorm;
end;

procedure TAllpassDelay.setdelay(delay: single);// In sample time
begin
 Fa1 := (1 - delay) / (1 + delay);
end;

end.

	Date: 2005-06-06 08:15:37

	By: ed.luosfosruoivas@naitsirhC

// You'll get a good performance boost by combining the 6 allpasses to one and rewriting
// that one to FPU code. Heavy speed increase AND you can make the number of allpasses
// variable as well.

// This would look similar to this:

function TMasterAllpass.Process(const x:single):single;
var a : array[0..1] of Single;
 b : Single;
 i : Integer;
begin
 a[0]:=x*fA1+fY[0];
 b:=a[0]*fA1;
 fY[0]:=b-x;

 i:=0;
 while i<fStages do
 begin
 a[1]:=b-fY[i+1];
 b:=a[1]*fA1;
 fY[i+1]:=a[0]-b;
 a[0]:=b-fY[i+2];
 b:=a[0]*fA1;
 fY[i+2]:=a[1]-b;
 Inc(i,2);
 end;

 a[1]:=b-fY[5];
 b:=a[1]*fA1;
 fY[5]:=a[0]-b;
 Result:=a[1];
end;

Now all you have to do is crawling into the FPU registers...

	Date: 2005-06-07 11:31:05

	By: moc.yddaht@yddaht

Point taken ;)
Maybe we should combine all the stuff ;)
Btw:
It's lots of fun working from each others code, don't you think?

Polynominal Waveshaper

	Author or source: ed.luosfosruoivas@naitsirhC

	Type: (discrete harmonics)

	Created: 2006-07-28 17:58:54

notes

The following code will describe how to excite discrete harmonics and only these
harmonics. A simple polynominal waveshaper for processing the data is included as well.
However the code don't claim to be optimized. Using a horner scheme with precalculated
coefficients should be your choice here.
Also remember to oversample the data (optimal in the order of the harmonics) to have them
alias free.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	We assume the input is a sinewave (works for any input signal, but this makes everything more clear).
Then we have x = sin(a)

the first harmonic is plain simple (using trigonometric identities):

cos(2*a)= cos^2(a) - sin^2(a) = 1 - 2 sin^2(a)

using the general trigonometric identities:

sin(x + y) = sin(x)*cos(y) + sin(y)*cos(x)
cos(x + y) = cos(x)*cos(y) - sin(y)*sin(x)

together with some math, you can easily calculate: sin(3x), cos(4x), sin(5x), and so on...

Here's how the resulting waveshaper may look like:

// o = output, i = input
o = fPhase[1]* i * fGains[0]+
 fPhase[1]*(2*i*i - 1) * fGains[1]+
 fPhase[2]*(4*i*i*i - 3*i) * fGains[2]+
 fPhase[3]*(8*i*i*i*i - 8*i*i + 1) * fGains[3]-
 fPhase[4]*(16*i*i*i*i*i - 20*i*i*i + 5 * i) * fGains[4]+
 fPhase[5]*(32*i*i*i*i*i*i - 48*i*i*i*i + 18 * i*i - 1) * fGains[5]-
 fPhase[6]*(64*i*i*i*i*i*i*i - 112*i*i*i*i*i + 56 * i*i*i - 7 * i) * fGains[6]+
 fPhase[7]*(128*i*i*i*i*i*i*i*i - 256*i*i*i*i*i*i + 160 * i*i*i*i - 32 * i*i + 1) * fGains[7];

fPhase[..] is the sign array and fGains[..] is the gain factor array.

P.S.: I don't want to see a single comment about the fact that the code above is unoptimized. I know that!

Comments

	Date: 2006-07-28 22:16:36

	By: ed.luosfosruoivas@naitsirhC

Here's the more math like version:

// o = output, i = input
o = fPhase[1]* i * fGains[0]+
 fPhase[1]*(2*i^2 - 1) * fGains[1]+
 fPhase[2]*(4*i^3 - 3*i) * fGains[2]+
 fPhase[3]*(8*i^4 - 8*i^2 + 1) * fGains[3]-
 fPhase[4]*(16*i^5 - 20*i^3 + 5*i) * fGains[4]+
 fPhase[5]*(32*i^6 - 48*i^4 + 18 * i^2 - 1) * fGains[5]-
 fPhase[6]*(64*i^7 - 112*i^5 + 56 * i^3 - 7 * i) * fGains[6]+
 fPhase[7]*(128*i^8 - 256*i^6 + 160 * i^4 - 32 * i^2 + 1) * fGains[7];

	Date: 2006-07-28 23:29:49

	By: ten.xmg@zlipzzuf

Actually, this *doesn't* work in the way described on any input, only on single sinusoids of
amplitude 1. It's nonlinear - (a+b)^n is not the same thing as a^n+b^n, nor are (a*b)^n and a*(b^n).
Even just a sum of two sinusoids or a single sinusoid of a different amplitude breaks the
chosen-harmonics-only thing.

	Date: 2006-07-29 10:30:46

	By: ed.luosfosruoivas@naitsirhC

Do'oh. You're right. Once more I got fooled by the way of my measurement. That explains a
lot of things... Thanks for the clarification!

	Date: 2006-07-29 20:34:11

	By: ed.luosfosruoivas@naitsirhC

Btw. the coeffitients follow the chebyshev polynomials. Just in case you wonder about the
logic behind. Maybe we can call it chebyshev waveshaper from now on...

	Date: 2008-01-23 01:56:21

	By: ten.enilnotpo@kcirtscisyhp

I played with this idea for a while yesterday to no avail before discovering this post tonight.
I thought I could excite any harmonic I wanted using select Chebyshev Polynomials. But you are
totally right - it doesn't work that way. Any complex waveform that can be broken down into a
Fourier series is a linear sum of terms. Squaring or cubing the waveform, and therefor this sum,
leads to multiple cross terms which introduce additional frequencies. It does only work with
normalized single sinusoids . . .which is too bad.

Right now, the only way I can see to do this sort of thing where you excite select harmonics at will
is to run an FFT and then work from there in the frequency domain.

But my question is, if we are looking to simulate tube saturation, is the Chebyshev method good
enough. What, after all, do tubes do? Does a tube amp actually add discrete harmonics or is it
introducing all of those cross term frequencies as well?

	Date: 2009-05-19 22:26:03

	By: moc.liamg@neklov.neivalf

According to another post, the tube is simply a non linear function, for example a tan(x).
Actually by saturating any signal you will get harmonics (any but a pure square which cannot
be more saturated of couse...). As tan(x) is not linear, you should get harmonics… that's all.
Now if you want to pass only the high frequencies,just split the signal into 2 frequencies using
a lowpass vs highpass = signal - lowpass and process the frequencies you want to.

	Date: 2010-09-16 19:17:13

	By: moc.liamg@libojyr

I would like to add that this method could result in an approximated harmonic exciter using an
array of filters sufficiently narrow and steep to approximately single out individual frequencies
composing the original signal.

As such, it would be processing intensive because the polynomial would need to be calculated on
each band.

What you have presented is not completely bad. You only need to take into consideration that you're
getting frequency terms that are not necessarily harmonics. Steve Harris has a LADSPA plugin that
uses the chebychev polynomial as a waveshaper...and he calls it a harmonic exciter.

To user physicstrick: Tube emulation is much more than waveshaping. Bias conditions change with
signal dynamics, and you essentially get signal-power modulated duty cycle. I have found some good
articles about this and also there is a commercial product that claims to solve the discretized
system of ODE's in real time. This model eats CPU like you would not imagine.

My simple "trick" is to include the nonlinear function in a 1rst order filter calculation and
also to modulate the filter time constants with the filter state variable amplitude. This is not
quite right, but it produces an emulation that is more pleasing than plain waveshaping.

	Date: 2013-01-18 02:31:27

	By: moc.liamtoh@niffumtohrepus

If I'm correct, you're describing the same technique achievable by use of Chebyschev polynomials,
i.e. generating any integral harmonic of the original signal. I've experimented with these,
synthesizing only the second, third, fourth, etc. harmonics, but could never get a realistic
sound, probably because overdiven tubes/transistors don't work this way and there's no intermodulation
distortion, only the pure harmonics.

Reverberation Algorithms in Matlab

	Author or source: Gautham J. Mysore (moc.oohay@mjmahtuag)

	Created: 2003-07-15 08:58:05

	Linked files: MATLABReverb.zip.

notes

These M-files implement a few reverberation algorithms (based on Schroeder's and Moorer's
algorithms). Each of the M-files include a short description.

There are 5 M-files that implement reverberation. They are:

- schroeder1.m
- schroeder2.m
- schroeder3.m
- moorer.m
- stereoverb.m

The remaining 8 M-files implement filters, delay lines etc. Most of these are used in the
above M-files. They can also be used as building blocks for other reverberation
algorithms.

Comments

	Date: 2003-08-15 04:04:56

	By: moc.loa@mnijwerb

StereoVerb is the name of an old car stereo "enhancer" from way back. I was just trying to find
it's roots.

	Date: 2004-04-02 04:44:46

	By: moc.oohay@y_sunave

There is another allpass filter transfer function.
 -g+Z^(-m)
H(z)=------------
 1-gZ^(-m)

g is the attenuation
m is the number of delay (in sampel)

This allpass will give exponential decay impulse response, compare to your allpass that give
half sinc decay impulse response.

Reverberation techniques

	Author or source: Sean Costello

	Created: 2002-02-10 20:00:11

notes

* Parallel comb filters, followed by series allpass filters. This was the original design
by Schroeder, and was extended by Moorer. Has a VERY metallic sound for sharp transients.

* Several allpass filters in serie (also proposed by Schroeder). Also suffers from
metallic sound.

* 2nd-order comb and allpass filters (described by Moorer). Not supposed to give much of
an advantage over first order sections.

* Nested allpass filters, where an allpass filter will replace the delay line in another
allpass filter. Pioneered by Gardner. Haven't heard the results.

* Strange allpass amp delay line based structure in Jon Dattorro article (JAES). Four
allpass filters are used as an input to a cool "figure-8" feedback loop, where four
allpass reverberators are used in series with
a few delay lines. Outputs derived from various taps in structure. Supposedly based on a
Lexicon reverb design. Modulating delay lines are used in some of the allpass structures
to "spread out" the eigentones.

* Feedback Delay Networks. Pioneered by Puckette/Stautner, with Jot conducting extensive
recent research. Sound VERY good, based on initial experiments. Modulating delay lines and
feedback matrixes used to spread out eigentones.

* Waveguide-based reverbs, where the reverb structure is based upon the junction of many
waveguides. Julius Smith developed these. Recently, these have been shown to be
essentially equivalent to the feedback delay network reverbs. Also sound very nice.
Modulating delay lines and scattering values used to spread out eigentones.

* Convolution-based reverbs, where the sound to be reverbed is convolved with the impulse
response of a room, or with exponentially-decaying white noise. Supposedly the best sound,
but very computationally expensive, and not very flexible.

* FIR-based reverbs. Essentially the same as convolution. Probably not used, but shorter
FIR filters are probably used in combination with many of the above techniques, to provide
early reflections.

Simple Compressor class (C++)

	Author or source: Citizen Chunk

	Type: stereo, feed-forward, peak compressor

	Created: 2005-05-28 19:11:42

	Linked files: simpleSource.zip.

notes

Everyone seems to want to make their own compressor plugin these days, but very few know
where to start. After replying to so many questions on the KVR Dev Forum, I figured I
might as well just post some ready-to-use C++ source code.

This is a C++ implementation of a simple, stereo, peak compressor. It uses a feed-forward
topology, detecting the sidechain level pre-gain reduction. The sidechain detects the
rectified peak level, with stereo linking to preserve imaging. The attack/release uses the
EnvelopeDetector class (posted in the Analysis section).

Notes:
- Make sure to call initRuntime() before processing starts (i.e. call it in resume()).
- The process function takes a stereo input.
- VST params must be mapped to a practical range when setting compressor parameters. (i.e.
don't try setAttack(0.f).)

(see linked files)

Comments

	Date: 2005-11-26 01:56:48

	By: moc.liamtoh@361_lt

This code works perfectly, and I have tried a number of sound and each worked correctly. The
conversion is linear in logarithm domain.

The code has been written in such a professional style, can not believe it is FREE!!

Keep it up. Two super huge thumbs up.

Ting

Soft saturation

	Author or source: Bram de Jong

	Type: waveshaper

	Created: 2002-01-17 02:18:37

notes

This only works for positive values of x. a should be in the range 0..1

code

	1
2
3
4
5
6

	x < a:
 f(x) = x
x > a:
 f(x) = a + (x-a)/(1+((x-a)/(1-a))^2)
x > 1:
 f(x) = (a+1)/2

Comments

	Date: 2005-09-09 21:17:55

	By: gro.esabnaeco@euarg

This is a most excellent waveshaper.

I have implemented it as an effect for the music tracker Psycle, and so far I am very pleased with the
results. Thanks for sharing this knowledge, Bram!

	Date: 2006-03-12 02:35:16

	By: moc.erawtfosnetpot@nosniborb

I'm wondering about the >1 condition here. If a is 0.8, values <1 approach 0.85 but values >1
are clamped to 0.9 (there's a gap)

If you substitute x=1 to the equation for x>a you get: a+((1-a)/4) not (a+1)/2

Have I missed something or is there a reason for this?

(Go easy I'm new to all of this)

	Date: 2006-08-23 06:19:05

	By: moc.liamg@ubibik

Substituting x=1 into equation 2 (taking many steps)

f(x) = a + (x-a)/(1+ ((x-a)/(1-a))^2)
 = a + (1-a)/(1+ ((1-a)/(1-a))^2)
 = a + (1-a)/(1+ 1^2)
 = a + (1-a)/2
 = 2a/2 + (1-a)/2
 = (2a + 1 - a) /2
 = (a+1) / 2

	Date: 2006-08-24 11:03:04

	By: musicdsp@Nospam dsparsons.co.uk

You can normalise the output:
f(x)'=f(x)*(1/((a+1)/2))

This gives a nice variable shaper with smooth curve upto clipping at 0dBFS

Stereo Enhancer

	Author or source: vl.xobni@ksimruk

	Created: 2004-06-27 22:44:16

notes

Stereo Enhanca

code

	1
2
3
4
5
6
7
8
9

	// WideCoeff 0.0 1.5

#define StereoEnhanca(SamplL,SamplR,MonoSign, \
 DeltaLeft,WideCoeff) \
 MonoSign = (SamplL + SamplR)/2.0; \
 DeltaLeft = SamplL - MonoSign; \
 DeltaLeft = DeltaLeft * WideCoeff; \
 SamplL=SamplL + DeltaLeft; \
 SamplR=SamplR - DeltaLeft;

Comments

	Date: 2004-08-20 17:45:38

	By: moc.liamg@noteex

#define StereoEnhanca(SamplL,SamplR,MonoSign,
 DeltaLeft,DeltaRight,WideCoeff)
 MonoSign = (SamplL + SamplR)/2.0;

 DeltaLeft = SamplL - MonoSign;
 DeltaLeft *= WideCoeff;
 DeltaRight = SamplR - MonoSign;
 DeltaRight *= WideCoeff;

 SamplL += DeltaLeft;
 SamplR += DeltaRight;

I think this is more along the lines of what you were trying to accomplish. I doubt this is
the correct way of implementing this type of thing however.

	Date: 2004-08-24 15:40:31

	By: moc.noomyab@grubmah_kram

I believe both pieces of code do the same thing. Since MonoSign is set equal to the average
of the two signals, in the second case DeltaRight = -DeltaLeft.

	Date: 2005-01-07 10:20:20

	By: thaddy[@]thaddy.com

// Here's an implementation of the classic stereo enhancer in Delphi BASM
// Values below 0.1 have a narrowing effect
// Values abouve 0.1 widens
parameters:
Buffer = eax
Amount = edx
Samples = ecx

const
 Spread:single = 6.5536;

procedure Sound3d32f(Buffer:PSingle;Amount:Single;Samples:integer);
asm
 fld Amount
 fmul spread
 mov ecx, edx // move samples to ecx
 shr ecx, 1 // divide by two, stereo = 2 samples
@Start:
 fld [eax].dword // left sample
 fld [eax+4].dword // right sample, whole calculation runs on the stack
 fld st(0) // copy
 fadd st(0), st(2)
 fmul half // average =st(0), right sample = st(1), left = st(2), amount=st(3)
 fld st(0) // copy average
 fsubr st(0), st(3) // left diffence
 fmul st(0), st(4) // amount
 fadd st(0), st(1) // add average
 fadd st(0), st(3) // add original
 fmul half // divide by two
 fstp [eax].dword // and store
 fld st(0)
 fsubr st(0), st(2) // right difference
 fmul st(0), st(4) // amount
 faddp // add average
 faddp // add original
 fmul half // divide by 2
 fstp [eax+4].dword; // and store
 fxch // Dangling average?? remove it later, tdk
 ffree st(1)
 add eax, 8 // advance to next stereo pair
 loop @Start
 ffree st(0); // Cleanup amount
end;

	Date: 2005-03-24 09:45:09

	By: moc.yddaht@yddaht

Note 'half' is defined as const half:single = 0.5;
This is an ommission in the above posting

	Date: 2005-04-21 22:04:02

	By: moc.liamtoh@gorpketg

This original code makes indeed no sense.

>#define StereoEnhanca(SamplL,SamplR,MonoSign, \
>DeltaLeft,WideCoeff) \
>MonoSign = (SamplL + SamplR)/2.0; \
>DeltaLeft = SamplL - MonoSign; \
>DeltaLeft = DeltaLeft * WideCoeff; \
>SamplL=SamplL + DeltaLeft; \
>SamplR=SamplR - DeltaLeft;

Deltaleft hold no stereoinformation.
explained: Deltaleft=L-(L+R) = R!!!
So, in this example your stereo image would slide to the right more as you put widecoeff higher.

A better implementation is the following code.
#define StereoEnhanca(SamplL,SamplR,MonoSign, \
stereo,WideCoeff) \
MonoSign = (SamplL + SamplR)/2.0; \
stereo = SamplL - Sampl1L; \
stereo = DeltaLeft * WideCoeff; \
SamplL=SamplR + stereo; // R+Stereo = L
SamplR=SamplL - stereo; // L-Stereo = R

This way of stereoenhancement will lead to exaggerated reverberation effects (snaredrums).
This is not the best way to do widening, but it is the easiest.

Gtekprog.

Evert Verduin

	Date: 2005-04-21 22:06:51

	By: moc.liamtoh@gorpketg

oops,

stereo = SamplL - Sampl1L;
needs ofcourse to be
stereo = SamplL - Sampl1R;

and

stereo = DeltaLeft * WideCoeff; \
needs to be
stereo = stereo * WideCoeff; \

Again the correct code:

#define StereoEnhanca(SamplL,SamplR,MonoSign, \
stereo,WideCoeff) \
MonoSign = (SamplL + SamplR)/2.0; \
stereo = SamplL - Sampl1R; \
stereo = stereo * WideCoeff; \
SamplL=SamplR + stereo; // R+Stereo = L
SamplR=SamplL - stereo; // L-Stereo = R

This will do.

Evert

	Date: 2009-04-17 13:16:42

	By: moc.liamg@nostohnotyalc

You mean to use MonoSign variable somewhere - as in:

 #define StereoEnhanca(SamplL,SamplR,MonoSign, \
stereo,WideCoeff) \
MonoSign = (SamplL + SamplR)/2.0; \
stereo = SamplL - Sampl1R; \
stereo = stereo * WideCoeff; \

SamplL = MonoSign + stereo; // R+Stereo = L
SamplR = MonoSign - stereo; // L-Stereo = R

Or some variation?

Clayton

Stereo Field Rotation Via Transformation Matrix

	Author or source: Michael Gruhn

	Type: Stereo Field Rotation

	Created: 2008-03-17 09:40:10

notes

This work is hereby placed in the public domain for all purposes, including use in
commercial applications.

'angle' is the angle by which you want to rotate your stereo field.

code

	1
2
3
4
5
6
7

	// Calculate transformation matrix's coefficients
cos_coef = cos(angle);
sin_coef = sin(angle);

// Do this per sample
out_left = in_left * cos_coef - in_right * sin_coef;
out_right = in_left * sin_coef + in_right * cos_coef;

Comments

	Date: 2008-10-07 19:56:47

	By: moc.liamtoh@iniluigj

This looks like the rotation formula for a point in space. Can you explain how does it work
for a sound signal? Let's say that angle is 90 degrees, then you formula gives
out_left = -in_right
out_right = in_left
How would this be a 90 deg rotation of the sound?

	Date: 2008-10-15 12:16:02

	By: Foo

It IS the exact formula as rotation for a point in a 2D space (around its origin). Now this is
applied to the stereo field. Imagine it as a left-right plot, so the values of the left and right
channel get plotted (just like a goniometer: http://en.wikipedia.org/wiki/Goniometer_(audio)).
So now you can see the stereo image (mono = straight line, stereo = circle, etc...). Now when you
rotate THIS plot and then use the values of the rotated plot for the new left and right sample
values, you rotated the stereo image.
So just get a goniometer and look at how the signal changes when you run it through the algorithm,
it will be pretty obvious.

Hope this helps.

	Date: 2008-11-16 02:13:27

	By: Bar

Sorry this makes no sense at all. The rotation formula is predicated on the assumption that
(x,y) are coordinates of two orthogonal dimensions. Now you can choose to visualize stereo
signals anyway you like, including being on a Cartesian plan, or as polar coordinates, what have
you... But this visualization has no relationship to the physical location of the sound. The left
and right channels are NOT orthogonal dimensions physically. What the formula does is just some
weird panning. As the previous comment pointed out, just plug in some easy angles like 90, 180 ...
and see if you can make any valid interpretations out of them. You can't.

	Date: 2008-11-18 21:22:49

	By: Foo

So you want mathematical prove? Even though I consider this childish, because it'd take you <5
minutes to put this in Matlab or any other DSP prototyping bench and hear the rotation effect for
yourself. Anyway ...

For 180° the output should be totally inverted. So:
cos(180) = -1
sin(180) = 0
out_left = -in_left
out_right = -in_right

at 90° this means for a mono signal that the left channel will be a phase inverse of the right
channel, so ... go directly to result, do not calculate:
out_left = -in_right
out_right = in_left

at 45° is just like hard panning to the right (with a 3dB volume attenuation), so for a mono
signal the expected results would be one channel silence and the other would have the signal,
so we calculate:
cos(45) = sqrt(2)/2
sin(45) = sqrt(2)/2
for mono signal we assume: mono = in_left = in_right ... so it follows:
out_left = mono * sqrt(2)/2 - mono * sqrt(2)/2 = 0
out_right = mono * sqrt(2)/2 + mono * sqrt(2)/2 = mono * sqrt(2) == mono * 3dB

and one more, 360° means same output as input, calculate for yourself.

Valid enough?

	Date: 2008-11-20 20:18:24

	By: Bar

Then I'm not sure what you mean by rotation. In my mind, I see two sound sources at arbitrary
locations and I'm at the center of rotation. So the effect of a rotation would depend on the
angle subtended by the three points to begin with, which doesn't even show up in the formula.
Also please explains what does it mean by the two channels being orthogonal dimensions, which
is what the formula is based on. (I assume you understand the mathematical basis of how the
formula is derived.)

No, a phase inversion on both channels don't sound 180 deg rotated. It sounds exactly the same
as before.

	Date: 2008-11-20 21:27:25

	By: Bar

Let's try another experiment. You're in the midpoint of the line joining the two speakers and is
the center of rotation. Your signal happens to have all zeros for the left channel. The formula
simplifies to:
out_left = -in_right * sin
out_right = in_right * cos
As you rotate from 0 to 90, sin goes from 0 to 1, cos goes from 1 to 0. So the formula predicts
that the left channel goes from silence to a phase inverted right, and the right channel goes from
full sound to silence. Whereas physically the sound should move from my right to directly in front of
me. Please explain.

	Date: 2008-11-20 21:36:54

	By: Bar

Yet another childish thought. If one can treat signals as if they were space locations, then surely
translations will work just as well as rotations. So to move a sound source to another location,
one just add constants to the signals?

	Date: 2008-11-23 18:10:37

	By: Foo

If the source would be dead center a 180° rotation would mean the source would be behind you,
but since in stereo there is no front or behind (just left and right), behind gets indicated by
phase reversal (I know it doesn't reflect the position, but you can't because there is only left
and right).
Also the rotation is clockwise, so a positive angles shift the source to the right, which means
for your example if you'd rotate from 0° to -90° you'd indeed get the signal one the left channel
and the right blank. For a mono signal (both channels identical that is) and a rotation range of
-45° to 45° is the same as panning (with a 0dB pan law).

But I'll admit I was totally wrong and this entry in the musicdsp is the most faultiest that there
ever was and isn't going to be useful at all, to no one.
Anyway if this is not stereo field rotation, how would YOU call it? I'd happily forward the new
terminology to the siteadmin, so the entries' description can be changed as soon as possible to
whatever you think it is.

I'm just glad that I'm not the only one that is using wrong terminology, e.g. the Waves S1-Imager's
"Rotation" does the same as the above posted code, as does Nick Whitehurst's c_superstereo and
others ...

So tell me what it is called and I'll see if I can get the name changed, so everyone can be happy.
Though I doubt I can get Waves nor any audio engineers to also adapt the new, correct terminology,
that you will proved, for this kind of effect.

BTW if you want to discuss this further please mail to: 1337foo42bar69@trashmail.net because there
is no need to waste more comment space about this (I now think or at least hope that it only is a ...)
terminology discussion, because there is nothing wrong with the code itself I posted, or is there?

	Date: 2009-07-17 11:02:36

	By: null

Waves S1 Rotation, as you said, does exactly this. It is stereo field rotation, but in the same
way could be considered panning.

Thanks a lot for the useful code, it will be put to good use. :)

	Date: 2014-03-28 12:52:38

	By: moc.liamg@nabihci.nasleinad

I just tried this out but as you rotate the field there are points where the field is flattened
to become simply a mono signal rotated. visualize the output on a x/y vectorscope and perform the
roation to see what I mean.

I made a correction. The algorithm should be like this:

r = rotation_angle

out_left = (in_left * cos(r)) - (in_right * sin(r + pi));
out_right = (in_left * -sin(r)) - (in_right * cos(r + pi));

	Date: 2014-06-17 22:51:38

	By: moc.liamg@jdcisumff

Why are you adding pi to the sin and cos at the end?

What will adding 3.14 to the rotation do besides move the rotation angle further 3.14? IE if rotation
angle is 90, you're just adding 3.14 to it equaling 93.14. Why only to the right channel? Shouldn't
that cause problems?

Wouldn't that mean that the reason this wont sound flat is because the calculations are 3.14 off?

Stereo Width Control (Obtained Via Transfromation Matrix)

	Author or source: Michael Gruhn

	Type: Stereo Widener

	Created: 2008-03-17 16:54:42

notes

(I was quite surprised that this wasn't already in the archive, so here it is.)

This work is hereby placed in the public domain for all purposes, including use in
commercial applications.

'width' is the stretch factor of the stereo field:
width < 1: decrease in stereo width
width = 1: no change
width > 1: increase in stereo width
width = 0: mono

code

	1
2
3
4
5
6
7
8
9

	// calculate scale coefficient
coef_S = width*0.5;

// then do this per sample
m = (in_left + in_right)*0.5;
s = (in_right - in_left)*coef_S;

out_left = m - s;
out_right = m + s;

Comments

	Date: 2008-04-06 11:32:43

	By: ku.oc.oohay@895rennacs

Nice peace of code. I would add the following code at the end of the source to compensate for the
loss/gain of amplitude:

out_left /= 0.5 + coef_S;
out_right /= 0.5 + coef_S;

	Date: 2008-04-06 17:40:29

	By: -

Scanner, no I wouldn't add that. First off it is unnecessary calculation you can rescale the MS
matrix to your liking already! Plus your methode will cause a boost by 6dBs when you set the width
to 0 = mono. So mono signals get boosted by 6dB which I'm sure isn't what you intented.

Note: My original code is correct that is, when you'd look at an audio signal on a goniometer it
would scale the audio signal at the S-axis and leaving everything else unaffected.

But as I don't want people that add the additional calculation that scanner requested (sorry not
trying to mock you), an volume adjusted version.

[code]
// calc coefs
tmp = 1/max(1 + width,2);
coef_M = 1 * tmp;
coef_S = width * tmp;

// then do this per sample
m = (in_left + in_right)*coef_M;
s = (in_right - in_left)*coef_S;

out_left = m - s;
out_right = m + s;
[/code]

	Date: 2008-04-06 21:42:16

	By: ku.oc.oohay@895rennacs

Hi Michael,

Thanks for the correction, I have build your solution in PureData and it is better than my
suggestion was. B.t.w. there was already a posting on stereo enhancement on this site, you can
find it under the effects section.

	Date: 2008-04-07 22:47:14

	By: -

Scanner, no problem and yes I've seen the "Stereo Enhancer" entry, though (even though it
seems to try to achieve the same as this here) it is (as far as I can see) broken.

Time compression-expansion using standard phase vocoder

	Author or source: Cournape

	Type: vocoder phase time stretching

	Created: 2002-12-01 21:15:54

	Linked files: vocoder.m.

notes

Standard phase vocoder. For imporved techniques (faster), see paper of Laroche :
"Improved phase vocoder time-scale modification of audio"
Laroche, J.; Dolson, M.
Speech and Audio Processing, IEEE Transactions on , Volume: 7 Issue: 3 , May 1999
Page(s): 323 -332

Transistor differential amplifier simulation

	Author or source: ed.luosfosruoivas@naitsirhC

	Type: Waveshaper

	Created: 2004-08-09 07:46:11

notes

Writting an exam about electronic components, i learned several equations about simulating
that stuff. One simplified equation was the tanh(x) formula for the differential
amplifier. It is not exact, but since the amplifiers are driven with only small amplitudes
the behaviour is most often even advanced linear.
The fact, that the amp is differential, means, that the 2n order is eliminated, so the
sound is also similar to a tube.
For a very fast use, this code is in pure assembly language (not optimized with SSE-Code
yet) and performs in VST-Plugins very fast.
The code was written in delphi and if you want to translate the assembly code, you should
know, the the parameters passing is done via registers. So pinp=EAX pout=EDX sf=ECX.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	procedure Transistor(pinp,pout : PSingle; sf:Integer; Faktor: Single);
asm
 fld Faktor
@Start:
 fld [eax].single
 fmul st(0),st(1)

 fldl2e
 fmul
 fld st(0)
 frndint
 fsub st(1),st
 fxch st(1)
 f2xm1
 fld1
 fadd
 fscale { result := z * 2**i }
 fstp st(1)

 fld st(0)
 fmulp

 fld st(0)
 fld1
 faddp
 fld1
 fsubp st(2),st(0)
 fdivp

 fstp [edx].single

 add eax,4
 add edx,4
 loop @Start
 fstp st(0)
end;

UniVox Univibe Emulator

	Author or source: moc.liamg@libojyr

	Type: 4 Cascaded all-pass filters and optocoupler approximation

	Created: 2010-09-09 07:52:24

notes

This is a class and class member functions for a 'Vibe derived by means of bilinear
transform of the all-pass filter stages in a UniVibe. Some unique things happen as this
filter is modulated, so this has been somewhat involved computation of filter
coefficients, and is based on summation of 1rst-order filter stages as algebraically
decoupled during circuit analysis. A second part is an approximated model of the Vactrol
used to modulate the filters, including its time response to hopefully recapture the
modulation shape. It is likely there is a more efficient way to re-create the LFO shape,
and perhaps would be best with a lookup table. Keeping the calculation in the code makes
it possible for other people to modify and improve the algorithm.

Notice no wet/dry mix is implemented in this code block's "out" function. Originally this
was implemented in the calling routine, but if you use it as a stand-alone function you
may want to add summation to the input signal as it is an important part of the "chorus"
mode on the Vibe. The code as is represents only the Vibrato (warble) mode.

This is a module found in the Rakarrack guitar effects program. It is GPL, so please give
credit due and keep it free. You can find any of the omitted parts to see more precisely
how it is implemented with JACK on Linux by looking at the original sources at
sourceforge.net/projects/rakarrack.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

	/*
 Copyright (C) 2008-2010 Ryan Billing
 Author: Ryan Billing

 This program is free software; you can redistribute it and/or modify
 it under the terms of version 2 of the GNU General Public License
 as published by the Free Software Foundation.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License (version 2) for more details.

 You should have received a copy of the GNU General Public License
 (version2) along with this program; if not, write to the Free Software
 Foundation,
 Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

class Vibe
{

public:

 Vibe (float * efxoutl_, float * efxoutr_);
 ~Vibe ();
//note some of these functions not pasted below to improve clarity
//and to save space
 void out (float * smpsl, float * smpsr);
 void setvolume(int value);
 void setpanning(int value);
 void setpreset (int npreset);
 void changepar (int npar, int value);
 int getpar (int npar);
 void cleanup ();

 float outvolume;
 float *efxoutl;
 float *efxoutr;

private:
 int Pwidth;
 int Pfb;
 int Plrcross;
 int Pdepth;
 int Ppanning;
 int Pvolume;
 //all the ints above are the parameters to modify with a proper function.

 float fwidth;
 float fdepth;
 float rpanning, lpanning;
 float flrcross, fcross;
 float fb;
 EffectLFO lfo; //EffectLFO is an object that calculates the next sample from the LFO each time it's called

 float Ra, Rb, b, dTC, dRCl, dRCr, lampTC, ilampTC, minTC, alphal, alphar, stepl, stepr, oldstepl, oldstepr;
 float fbr, fbl;
 float dalphal, dalphar;
 float lstep,rstep;
 float cperiod;
 float gl, oldgl;
 float gr, oldgr;

 class fparams {
 public:
 float x1;
 float y1;
 //filter coefficients
 float n0;
 float n1;
 float d0;
 float d1;
 } vc[8], vcvo[8], ecvc[8], vevo[8], bootstrap[8];

 float vibefilter(float data, fparams *ftype, int stage);
 void init_vibes();
 void modulate(float ldrl, float ldrr);
 float bjt_shape(float data);

float R1;
float Rv;
float C2;
float C1[8];
float beta; //transistor forward gain.
float gain, k;
float oldcvolt[8] ;
float en1[8], en0[8], ed1[8], ed0[8];
float cn1[8], cn0[8], cd1[8], cd0[8];
float ecn1[8], ecn0[8], ecd1[8], ecd0[8];
float on1[8], on0[8], od1[8], od0[8];

 class FPreset *Fpre;

};

Vibe::Vibe (float * efxoutl_, float * efxoutr_)
{
 efxoutl = efxoutl_;
 efxoutr = efxoutr_;

//Swing was measured on operating device of: 10K to 250k.
//400K is reported to sound better for the "low end" (high resistance)
//Because of time response, Rb needs to be driven further.
//End resistance will max out to around 10k for most LFO freqs.
//pushing low end a little lower for kicks and giggles
Ra = 500000.0f; //Cds cell dark resistance.
Ra = logf(Ra); //this is done for clarity
Rb = 600.0f; //Cds cell full illumination
b = exp(Ra/logf(Rb)) - CNST_E;
dTC = 0.085f;
dRCl = dTC;
dRCr = dTC; //Right & left channel dynamic time contsants
minTC = logf(0.005f/dTC);
//cSAMPLE_RATE is 1/SAMPLE_RATE
alphal = 1.0f - cSAMPLE_RATE/(dRCl + cSAMPLE_RATE);
alphar = alphal;
dalphal = dalphar = alphal;
lampTC = cSAMPLE_RATE/(0.02 + cSAMPLE_RATE); //guessing 10ms
ilampTC = 1.0f - lampTC;
lstep = 0.0f;
rstep = 0.0f;
Pdepth = 127;
Ppanning = 64;
lpanning = 1.0f;
rpanning = 1.0f;
fdepth = 1.0f;
oldgl = 0.0f;
oldgr = 0.0f;
gl = 0.0f;
gr = 0.0f;
for(int jj = 0; jj<8; jj++) oldcvolt[jj] = 0.0f;
cperiod = 1.0f/fPERIOD;

init_vibes();
cleanup();

}

Vibe::~Vibe ()
{
}

void
Vibe::cleanup ()
{
//Yeah, clean up some stuff

};

void
Vibe::out (float *smpsl, float *smpsr)
{

 int i,j;
 float lfol, lfor, xl, xr, fxl, fxr;
 float vbe,vin;
 float cvolt, ocvolt, evolt, input;
 float emitterfb = 0.0f;
 float outl, outr;

 input = cvolt = ocvolt = evolt = 0.0f;

 lfo.effectlfoout (&lfol, &lfor);

 lfol = fdepth + lfol*fwidth;
 lfor = fdepth + lfor*fwidth;

 if (lfol > 1.0f)
 lfol = 1.0f;
 else if (lfol < 0.0f)
 lfol = 0.0f;
 if (lfor > 1.0f)
 lfor = 1.0f;
 else if (lfor < 0.0f)
 lfor = 0.0f;

 lfor = 2.0f - 2.0f/(lfor + 1.0f); //
 lfol = 2.0f - 2.0f/(lfol + 1.0f); //emulate lamp turn on/off characteristic by typical curves

 for (i = 0; i < PERIOD; i++)
 {
 //Left Lamp
 gl = lfol*lampTC + oldgl*ilampTC;
 oldgl = gl;
 //Right Lamp
 gr = lfor*lampTC + oldgr*ilampTC;
 oldgr = gr;

 //Left Cds
 stepl = gl*alphal + dalphal*oldstepl;
 oldstepl = stepl;
 dRCl = dTC*expf(stepl*minTC);
 alphal = cSAMPLE_RATE/(dRCl + cSAMPLE_RATE);
 dalphal = 1.0f - cSAMPLE_RATE/(0.5f*dRCl + cSAMPLE_RATE); //different attack & release character
 xl = CNST_E + stepl*b;
 fxl = expf(Ra/logf(xl));

 //Right Cds
 stepr = gr*alphar + dalphar*oldstepr;
 oldstepr = stepr;
 dRCr = dTC*expf(stepr*minTC);
 alphar = cSAMPLE_RATE/(dRCr + cSAMPLE_RATE);
 dalphar = 1.0f - cSAMPLE_RATE/(0.5f*dRCr + cSAMPLE_RATE); //different attack & release character
 xr = CNST_E + stepr*b;
 fxr = expf(Ra/logf(xr));

 if(i%16 == 0) modulate(fxl, fxr);

 //Left Channel

 input = bjt_shape(fbl + smpsl[i]);

 emitterfb = 25.0f/fxl;
 for(j=0;j<4;j++) //4 stages phasing
 {
 cvolt = vibefilter(input,ecvc,j) + vibefilter(input + emitterfb*oldcvolt[j],vc,j);
 ocvolt = vibefilter(cvolt,vcvo,j);
 oldcvolt[j] = ocvolt;
 evolt = vibefilter(input, vevo,j);

 input = bjt_shape(ocvolt + evolt);
 }
 fbl = fb*ocvolt;
 outl = lpanning*input;

 //Right channel

 input = bjt_shape(fbr + smpsr[i]);

 emitterfb = 25.0f/fxr;
 for(j=4;j<8;j++) //4 stages phasing
 {
 cvolt = vibefilter(input,ecvc,j) + vibefilter(input + emitterfb*oldcvolt[j],vc,j);
 ocvolt = vibefilter(cvolt,vcvo,j);
 oldcvolt[j] = ocvolt;
 evolt = vibefilter(input, vevo,j);

 input = bjt_shape(ocvolt + evolt);
 }

 fbr = fb*ocvolt;
 outr = rpanning*input;

 efxoutl[i] = outl*fcross + outr*flrcross;
 efxoutr[i] = outr*fcross + outl*flrcross;

 };

};

float
Vibe::vibefilter(float data, fparams *ftype, int stage)
{
float y0 = 0.0f;
y0 = data*ftype[stage].n0 + ftype[stage].x1*ftype[stage].n1 - ftype[stage].y1*ftype[stage].d1;
ftype[stage].y1 = y0 + DENORMAL_GUARD;
ftype[stage].x1 = data;
return y0;
};

float
Vibe::bjt_shape(float data)
{
float vbe, vout;
float vin = 7.5f*(1.0f + data);
if(vin<0.0f) vin = 0.0f;
if(vin>15.0f) vin = 15.0f;
vbe = 0.8f - 0.8f/(vin + 1.0f); //really rough, simplistic bjt turn-on emulator
vout = vin - vbe;
vout = vout*0.1333333333f -0.90588f; //some magic numbers to return gain to unity & zero the DC
return vout;
}

void
Vibe::init_vibes()
{
k = 2.0f*fSAMPLE_RATE;
float tmpgain = 1.0f;
 R1 = 4700.0f;
 Rv = 4700.0f;
 C2 = 1e-6f;
 beta = 150.0f; //transistor forward gain.
 gain = -beta/(beta + 1.0f);

//Univibe cap values 0.015uF, 0.22uF, 470pF, and 0.0047uF
C1[0] = 0.015e-6f;
C1[1] = 0.22e-6f;
C1[2] = 470e-12f;
C1[3] = 0.0047e-6f;
C1[4] = 0.015e-6f;
C1[5] = 0.22e-6f;
C1[6] = 470e-12f;
C1[7] = 0.0047e-6f;

for(int i =0; i<8; i++)
{
//Vo/Ve driven from emitter
en1[i] = k*R1*C1[i];
en0[i] = 1.0f;
ed1[i] = k*(R1 + Rv)*C1[i];
ed0[i] = 1.0f + C1[i]/C2;

// Vc~=Ve/(Ic*Re*alpha^2) collector voltage from current input.
//Output here represents voltage at the collector

cn1[i] = k*gain*Rv*C1[i];
cn0[i] = gain*(1.0f + C1[i]/C2);
cd1[i] = k*(R1 + Rv)*C1[i];
cd0[i] = 1.0f + C1[i]/C2;

//Contribution from emitter load through passive filter network
ecn1[i] = k*gain*R1*(R1 + Rv)*C1[i]*C2/(Rv*(C2 + C1[i]));
ecn0[i] = 0.0f;
ecd1[i] = k*(R1 + Rv)*C1[i]*C2/(C2 + C1[i]);
ecd0[i] = 1.0f;

// %Represents Vo/Vc. Output over collector voltage
on1[i] = k*Rv*C2;
on0[i] = 1.0f;
od1[i] = k*Rv*C2;
od0[i] = 1.0f + C2/C1[i];

//%Bilinear xform stuff
tmpgain = 1.0f/(cd1[i] + cd0[i]);
vc[i].n1 = tmpgain*(cn0[i] - cn1[i]);
vc[i].n0 = tmpgain*(cn1[i] + cn0[i]);
vc[i].d1 = tmpgain*(cd0[i] - cd1[i]);
vc[i].d0 = 1.0f;

tmpgain = 1.0f/(ecd1[i] + ecd0[i]);
ecvc[i].n1 = tmpgain*(ecn0[i] - ecn1[i]);
ecvc[i].n0 = tmpgain*(ecn1[i] + ecn0[i]);
ecvc[i].d1 = tmpgain*(ecd0[i] - ecd1[i]);
ecvc[i].d0 = 1.0f;

tmpgain = 1.0f/(od1[i] + od0[i]);
vcvo[i].n1 = tmpgain*(on0[i] - on1[i]);
vcvo[i].n0 = tmpgain*(on1[i] + on0[i]);
vcvo[i].d1 = tmpgain*(od0[i] - od1[i]);
vcvo[i].d0 = 1.0f;

tmpgain = 1.0f/(ed1[i] + ed0[i]);
vevo[i].n1 = tmpgain*(en0[i] - en1[i]);
vevo[i].n0 = tmpgain*(en1[i] + en0[i]);
vevo[i].d1 = tmpgain*(ed0[i] - ed1[i]);
vevo[i].d0 = 1.0f;

// bootstrap[i].n1
// bootstrap[i].n0
// bootstrap[i].d1
}

};

void
Vibe::modulate(float ldrl, float ldrr)
{
float tmpgain;
float R1pRv;
float C2pC1;
Rv = 4700.0f + ldrl;
R1pRv = R1 + Rv;

for(int i =0; i<8; i++)
{
if(i==4) {
Rv = 4700.0f + ldrr;
R1pRv = R1 + Rv;
}

C2pC1 = C2 + C1[i];
//Vo/Ve driven from emitter
ed1[i] = k*(R1pRv)*C1[i];
//ed1[i] = R1pRv*kC1[i];

// Vc~=Ve/(Ic*Re*alpha^2) collector voltage from current input.
//Output here represents voltage at the collector
cn1[i] = k*gain*Rv*C1[i];
//cn1[i] = kgainCl[i]*Rv;
//cd1[i] = (R1pRv)*C1[i];
cd1[i]=ed1[i];

//Contribution from emitter load through passive filter network
ecn1[i] = k*gain*R1*cd1[i]*C2/(Rv*(C2pC1));
//ecn1[i] = iC2pC1[i]*kgainR1C2*cd1[i]/Rv;
ecd1[i] = k*cd1[i]*C2/(C2pC1);
//ecd1[i] = iC2pC1[i]*k*cd1[i]*C2/(C2pC1);

// %Represents Vo/Vc. Output over collector voltage
on1[i] = k*Rv*C2;
od1[i] = on1[i];

//%Bilinear xform stuff
tmpgain = 1.0f/(cd1[i] + cd0[i]);
vc[i].n1 = tmpgain*(cn0[i] - cn1[i]);
vc[i].n0 = tmpgain*(cn1[i] + cn0[i]);
vc[i].d1 = tmpgain*(cd0[i] - cd1[i]);

tmpgain = 1.0f/(ecd1[i] + ecd0[i]);
ecvc[i].n1 = tmpgain*(ecn0[i] - ecn1[i]);
ecvc[i].n0 = tmpgain*(ecn1[i] + ecn0[i]);
ecvc[i].d1 = tmpgain*(ecd0[i] - ecd1[i]);
ecvc[i].d0 = 1.0f;

tmpgain = 1.0f/(od1[i] + od0[i]);
vcvo[i].n1 = tmpgain*(on0[i] - on1[i]);
vcvo[i].n0 = tmpgain*(on1[i] + on0[i]);
vcvo[i].d1 = tmpgain*(od0[i] - od1[i]);

tmpgain = 1.0f/(ed1[i] + ed0[i]);
vevo[i].n1 = tmpgain*(en0[i] - en1[i]);
vevo[i].n0 = tmpgain*(en1[i] + en0[i]);
vevo[i].d1 = tmpgain*(ed0[i] - ed1[i]);

}

};

Variable-hardness clipping function

	Author or source: Laurent de Soras (moc.ecrofmho@tnerual)

	Created: 2004-04-07 09:36:46

	Linked files: laurent.gif.

notes

k >= 1 is the "clipping hardness". 1 gives a smooth clipping, and a high value gives
hardclipping.

Don't set k too high, because the formula use the pow() function, which use exp() and
would overflow easily. 100 seems to be a reasonable value for "hardclipping"

code

	1

	f (x) = sign (x) * pow (atan (pow (abs (x), k)), (1 / k));

Comments

	Date: 2003-11-15 03:56:35

	By: moc.liamtoh@sisehtnysorpitna

// Use this function instead of atan and see performance increase drastically :)

inline double fastatan(double x)
{
 return (x / (1.0 + 0.28 * (x * x)));
}

	Date: 2004-07-16 09:36:33

	By: gro.psdcisum@maps

The greater k becomes the lesser is the change in the form of f(x, k). I recommend using
f2(x, k2) = sign(x) * pow(atan(pow(abs(x), 1 / k2)), k2) , k2 in [0.01, 1]
where k2 is the "clipping softness" (k2 = 0.01 means "hardclipping", k2 = 1 means
"softclipping"). This gives better control over the clipping effect.

	Date: 2004-08-12 18:42:58

	By: gro.liamon@demrofniton

Don't know if i understood ok , but, how can i clip at diferent levels than -1.0/1.0 using this
func? tried several ways but none seems to work

	Date: 2004-08-14 04:02:00

	By: moc.liamg@noteex

The most straightforward way to adjust the level (x) at which the signal is clipped would be to
multiply the signal by 1/x before the clipping function then multiply it again by x afterwards.

	Date: 2004-10-09 23:27:57

	By: ed.xmg@releuhcsc

Atan is a nice softclipping function, but you can do without pow().

x: input value
a: clipping factor (0 = none, infinity = hard)
ainv: 1/a

y = ainv * atan(x * a);

	Date: 2006-05-28 20:32:49

	By: uh.etle.fni@yfoocs

Even better, you can normalize the output using:

shape = 1..infinity

precalc:
 inv_atan_shape=1.0/atan(shape);
process:
 output = inv_atan_shape * atan(input*shape);

This gives a very soft transition from no distortion to hard clipping.

	Date: 2011-01-03 14:07:35

	By: moc.liamg@nalevart

Scoofy,

What do you mean with 'shape'?
Is it a new parameter?

	Date: 2013-01-18 02:42:09

	By: moc.liamtoh@niffumtohrepus

sign (x) * pow (atan (pow (abs (x), k)), (1 / k));

OUCH! That's a lot of pow, atan and floating point division - probably kill most CPU's :) My
experience has been that any sigmoid function will create decent distortion if oversampled and
eq'ed properly. You can adjust the "hardness" of the clipping by simply changing a couple
coefficients, or by increasing/decreasing the input gain: like so:

y = A * tanh(B * x)

Cascading a couple/few of these will give you bone-crushing, Megadeth/Slayer style grind while
rolling back the gain gives a Fender Twin sound.

Two cascaded half-wave soft clippers gives duty-cycle modulation and a transfer curve similar to
the 3/2 power curve of tubes. I came up w/ a model based on that solution after reading reading
this: http://www.trueaudio.com/at_eetjlm.htm (orig. link at www.simulanalog.org)

	Date: 2013-06-14 11:42:26

	By: moc.liamtoh@niffumtohrepus

If anyone is interested, I have a working amp modeler and various c/c++ classes that model
distortion circuits by numerical solutions to non-linear ODE's like those described by
Yeh, Smith, Macak, Pakarinen, et al. in their PhD disertations and DAFX papers. Although
static waveshapers/filters can give decent approximations & cool sounds, they lack the dynamic
properties of the actual circuits and have poor harmonics. I also have whitepapers on my
implementations for those that think math is cool. Drop me a line for more info.

WaveShaper

	Author or source: Bram de Jong

	Type: waveshaper

	Created: 2002-01-17 02:17:49

notes

where x (in [-1..1] will be distorted and a is a distortion parameter that goes from 1 to
infinity
The equation is valid for positive and negativ values.
If a is 1, it results in a slight distortion and with bigger a's the signal get's more
funky.

A good thing about the shaper is that feeding it with bigger-than-one
values, doesn't create strange fx. The maximum this function will reach is
1.2 for a=1.

code

	1

	f(x,a) = x*(abs(x) + a)/(x^2 + (a-1)*abs(x) + 1)

Waveshaper

	Author or source: Jon Watte

	Type: waveshaper

	Created: 2002-01-17 02:19:17

notes

A favourite of mine is using a sin() function instead.
This will have the "unfortunate" side effect of removing
odd harmonics if you take it to the extreme: a triangle
wave gets mapped to a pure sine wave.
This will work with a going from .1 or so to a= 5 and bigger!
The mathematical limits for a = 0 actually turns it into a linear
function at that point, but unfortunately FPUs aren't that good
with calculus :-) Once a goes above 1, you start getting clipping
in addition to the "soft" wave shaping. It starts getting into
more of an effect and less of a mastering tool, though :-)

Seeing as this is just various forms of wave shaping, you
could do it all with a look-up table, too. In my version, that would
get rid of the somewhat-expensive sin() function.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	(input: a == "overdrive amount")

z = M_PI * a;
s = 1/sin(z)
b = 1/a

if (x > b)
 f(x) = 1
else
 f(x) = sin(z*x)*s

Waveshaper

	Author or source: Partice Tarrabia and Bram de Jong

	Created: 2002-01-17 02:21:49

notes

amount should be in [-1..1[Plot it and stand back in astonishment! ;)

code

	1
2
3
4
5

	x = input in [-1..1]
y = output
k = 2*amount/(1-amount);

f(x) = (1+k)*x/(1+k*abs(x))

Comments

	Date: 2002-06-27 07:15:59

	By: moc.noicratse@ajelak

I haven't compared this to the other waveshapers, but its behavior with input outside the [-1..1]
range is interesting. With a relatively moderate shaping amounts which don't distort in-range
signals severely, it damps extremely out-of-range signals fairly hard, e.g. x = 100,
k = 0.1 yields y = 5.26; as x goes to infinity, y approaches 5.5. This might come in handy
to control nonlinear processes which would otherwise be prone to computational blowup.

Waveshaper (simple description)

	Author or source: Jon Watte

	Type: Polynomial; Distortion

	Created: 2002-08-15 00:45:22

notes

> The other question; what's a 'waveshaper' algorithm. Is it simply another
> word for distortion?

A typical "waveshaper" is some function which takes an input sample value
X and transforms it to an output sample X'. A typical implementation would
be a look-up table of some number of points, and some level of interpolation
between those points (say, cubic). When people talk about a wave shaper,
this is most often what they mean. Note that a wave shaper, as opposed to a
filter, does not have any state. The mapping from X -> X' is stateless.

Some wave shapers are implemented as polynomials, or using other math
functions. Hard clipping is a wave shaper implemented using the min() and
max() functions (or the three-argument clamp() function, which is the same
thing). A very mellow and musical-sounding distortion is implemented using
a third-degree polynomial; something like X' = (3/2)X - (1/2)X^3. The nice
thing with polynomial wave shapers is that you know that the maximum they
will expand bandwidth is their order. Thus, you need to oversample 3x to
make sure that a third-degree polynomial is aliasing free. With a lookup
table based wave shaper, you don't know this (unless you treat an N-point
table as an N-point polynomial :-)

code

	1
2
3

	float waveshape_distort(float in) {
 return 1.5f * in - 0.5f * in *in * in;
}

Comments

	Date: 2005-06-30 09:41:07

	By: ed.luosfosruoivas@naitsirhC

Yes! It's one of the most simple waveshaper and you know the amount of oversampling!
Works very nice (and fast).

Waveshaper :: Gloubi-boulga

	Author or source: Laurent de Soras on IRC

	Created: 2002-03-17 15:40:13

notes

Multiply input by gain before processing

code

	1
2
3

	const double x = input * 0.686306;
const double a = 1 + exp (sqrt (fabs (x)) * -0.75);
output = (exp (x) - exp (-x * a)) / (exp (x) + exp (-x));

Comments

	Date: 2004-09-25 21:42:39

	By: ten.etelirt@gnihtliam

you can use a taylor series approximation for the exp , save time by realizing that
exp(-x) = 1/exp(x), use newton's method to calculate the sqrt with less precision...
and if you use SIMD instructions, you can calculate several values in parallel. dunno
what the savings would be like, but it would surely be faster.

	Date: 2005-05-25 22:32:21

	By: ed.luosfosruoivas@naitsirhC

// Maybe something like this:

function GloubiBoulga(x:Single):Single;
var a,b:Single;
begin
 x:=x*0.686306;
 a:=1+exp(sqrt(f_abs(x))*-0.75);
 b:=exp(x);
 Result:=(b-exp(-x*a))*b/(b*b+1);
end;

still expensive, but...

	Date: 2005-05-28 00:49:48

	By: ed.luosfosruoivas@naitsirhC

A Taylor series doesn't work very well, because the approximation effects the result very early due to
a) numerical critical additions & subtractions of approximations
b) approximating approximated "a" makes the result evene more worse.

The above version has already been improved, by removing 2 of 5 exp() functions.

You can also try to express the exp(x)+exp(-x) as cosh(x) with its approximation. So:

b:=exp(x);
Result:=(b-exp(-x*a))*b/(b*b+1);

would be:

Result:=(exp(x)-exp(-x*a))*20160/40320+x*x*(20160+ x*x*(1680+x*x*(56+x*x)));

but this is again more worse. Anyone else?

	Date: 2005-09-13 09:55:55

	By: llun.ved@regguHwodahS

Use table lookup with interpolation.

	Date: 2005-09-22 01:07:58

	By: ten.baltg@liced

IMHO, you can use
x - 0.15 * x^2 - 0.15 * x^3
instead of this scary formula.

I try to explain my position with this small graph:
http://liteprint.com/download/replacment.png

This is only first step, if you want to get more correct result you can use interpolation
method called method of minimal squares (this is translation from russian, maybe in england
it has another name)

	Date: 2005-09-22 07:19:07

	By: ku.oc.snosrapsd@psdcisum

That's much better decil - thx for that!

DSP

	Date: 2005-09-22 11:05:07

	By: ten.baltg@liced

You are welcome :)

Now I've working under plugin with wapeshapping processing like this. I've put a link to it
here, when I've done it.

	Date: 2005-09-24 01:15:38

	By: ten.baltg@liced

You can check my version:
http://liteprint.com/download/SweetyVST.zip

Please, send comments and suggestions to my email.

Dmitry.

	Date: 2005-10-27 09:57:44

	By: moc.liamtoh@12_namyaj

Which formula exactly did you use decil, for your plugin? How do you get different harmonics
from this algo. thanx

jay

	Date: 2005-11-15 09:09:48

	By: ten.etelirt@liam

wow, blast from the past seeing this turn up on kvraudio.

christian - i'd have thought that an advantage of using a taylor series approximation would be
that it limits the order of the polynomial (and the resulting bandwidth) somewhat. it's been ages
since i tested, but i thought i got some reasonable sounding results using the taylor series
approximation. maybe not.

decil - isn't that a completely unrelated polynomial (similar to the common and cheap x - a x^3 ?).
i'd think you'd have to do something about the dc from the x^2 term, too (or do a sign(x)*x^2).
anyway, your plugin sounds to be popular so i look forward to checking it out later at home.

Other

Contents:

	16-Point Fast Integer Sinc Interpolator.

	16-to-8-bit first-order dither

	3rd order Spline interpollation

	5-point spline interpollation

	Allocating aligned memory

	Antialiased Lines

	Automatic PDC system

	Base-2 exp

	Bit-Reversed Counting

	Block/Loop Benchmarking

	Branchless Clipping

	Calculate notes (java)

	Center separation in a stereo mixdown

	Center separation in a stereo mixdown

	Cheap pseudo-sinusoidal lfo

	Clipping without branching

	Constant-time exponent of 2 detector

	Conversion and normalization of 16-bit sample to a floating point number

	Conversions on a PowerPC

	Cubic interpollation

	Cure for malicious samples

	Denormal DOUBLE variables, macro

	Denormal numbers

	Denormal numbers, the meta-text

	Denormalization preventer

	Denormalization preventer

	Dither code

	Dithering

	Double to Int

	Envelope Follower

	Exponential curve for

	Exponential parameter mapping

	Fast Float Random Numbers

	Fast abs/neg/sign for 32bit floats

	Fast binary log approximations

	Fast cube root, square root, and reciprocal for x86/SSE CPUs.

	Fast exp() approximations

	Fast exp2 approximation

	Fast log2

	Fast power and root estimates for 32bit floats

	Fast rounding functions in pascal

	Fast sign for 32 bit floats

	Float to int

	Float to int (more intel asm)

	Float to integer conversion

	Float-to-int, coverting an array of floats

	Gaussian dithering

	Gaussian random numbers

	Hermite Interpolator (x86 ASM)

	Hermite interpollation

	Linear interpolation

	Lock free fifo

	MATLAB-Tools for SNDAN

	MIDI note/frequency conversion

	Matlab Time Domain Impulse Response Inverter/Divider

	Millimeter to DB (faders…)

	Motorola 56300 Disassembler

	Noise Shaping Class

	Nonblocking multiprocessor/multithread algorithms in C++

	Piecewise quadratic approximate exponential function

	Pow(x,4) approximation

	Rational tanh approximation

	Reading the compressed WA! parts in gigasampler files

	Really fast x86 floating point sin/cos

	Reasonably accurate/fastish tanh approximation

	Resampling

	Saturation

	Sin(x) Aproximation (with SSE code)

	Sin, Cos, Tan approximation

	VST SDK GUI Switch without

16-Point Fast Integer Sinc Interpolator.

	Author or source: moc.liamg@tramum

	Created: 2005-11-15 22:28:31

notes

This is designed for fast upsampling with good quality using only a 32-bit accumulator.
Sound quality is very good. Conceptually it resamples the input signal 32768x and performs
nearest-neighbour to get the requested sample rate. As a result downsampling will result
in aliasing.

The provided Sinc table is Blackman-Harris windowed with a slight lowpass. The table
entries are 16-bit and are 16x linear-oversampled. It should be pretty easy to figure out
how to make your own table for it.

Code provided is in Java. Converting to C/MMX etc. should be pretty trivial.

Remember the interpolator requires a number of samples before and after the sample to be
interpolated, so you can't resample the whole of a passed input buffer in one go.

Have fun,
Martin

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

	public class SincResampler {
 private final int FP_SHIFT = 15;
 private final int FP_ONE = 1 << FP_SHIFT;
 private final int FP_MASK = FP_ONE - 1;

 private final int POINT_SHIFT = 4; // 16 points

 private final int OVER_SHIFT = 4; // 16x oversampling

 private final short[] table = {

 0, -7, 27, -71, 142, -227, 299, 32439, 299, -227, 142, -71, 27, -7, 0, 0,

 0, 0, -5, 36, -142, 450, -1439, 32224, 2302, -974, 455, -190, 64, -15, 2, 0,

 0, 6, -33, 128, -391, 1042, -2894, 31584, 4540, -1765, 786, -318, 105, -25, 3, 0,

 0, 10, -55, 204, -597, 1533, -4056, 30535, 6977, -2573, 1121, -449, 148, -36, 5, 0,

 -1, 13, -71, 261, -757, 1916, -4922, 29105, 9568, -3366, 1448, -578, 191, -47, 7, 0,

 -1, 15, -81, 300, -870, 2185, -5498, 27328, 12263, -4109, 1749, -698, 232, -58, 9, 0,

 -1, 15, -86, 322, -936, 2343, -5800, 25249, 15006, -4765, 2011, -802, 269, -68, 10, 0,

 -1, 15, -87, 328, -957, 2394, -5849, 22920, 17738, -5298, 2215, -885, 299, -77, 12, 0,

 0, 14, -83, 319, -938, 2347, -5671, 20396, 20396, -5671, 2347, -938, 319, -83, 14, 0,

 0, 12, -77, 299, -885, 2215, -5298, 17738, 22920, -5849, 2394, -957, 328, -87, 15, -1,

 0, 10, -68, 269, -802, 2011, -4765, 15006, 25249, -5800, 2343, -936, 322, -86, 15, -1,

 0, 9, -58, 232, -698, 1749, -4109, 12263, 27328, -5498, 2185, -870, 300, -81, 15, -1,

 0, 7, -47, 191, -578, 1448, -3366, 9568, 29105, -4922, 1916, -757, 261, -71, 13, -1,

 0, 5, -36, 148, -449, 1121, -2573, 6977, 30535, -4056, 1533, -597, 204, -55, 10, 0,

 0, 3, -25, 105, -318, 786, -1765, 4540, 31584, -2894, 1042, -391, 128, -33, 6, 0,

 0, 2, -15, 64, -190, 455, -974, 2302, 32224, -1439, 450, -142, 36, -5, 0, 0,

 0, 0, -7, 27, -71, 142, -227, 299, 32439, 299, -227, 142, -71, 27, -7, 0

 };

 /*

 private final int POINT_SHIFT = 1; // 2 points

 private final int OVER_SHIFT = 0; // 1x oversampling

 private final short[] table = {

 32767, 0,

 0 , 32767

 };

 */

 private final int POINTS = 1 << POINT_SHIFT;

 private final int INTERP_SHIFT = FP_SHIFT - OVER_SHIFT;

 private final int INTERP_BITMASK = (1 << INTERP_SHIFT) - 1;

 /*
 input - array of input samples
 inputPos - sample position (must be at least POINTS/2 + 1, ie. 7)
 inputFrac - fractional sample position (0 <= inputFrac < FP_ONE)
 step - number of input samples per output sample * FP_ONE
 lAmp - left output amplitude (1.0 = FP_ONE)
 lBuf - left output buffer
 rAmp - right output amplitude (1.0 = FP_ONE)
 rBuf - right output buffer
 pos - offset into output buffers
 count - number of output samples to produce
 */

 public void resample(short[] input, int inputPos, int inputFrac, int step,

 int lAmp, int[] lBuf, int rAmp, int[] rBuf, int pos, int count) {

 for(int p = 0; p < count; p++) {

 int tabidx1 = (inputFrac >> INTERP_SHIFT) << POINT_SHIFT;

 int tabidx2 = tabidx1 + POINTS;

 int bufidx = inputPos - POINTS/2 + 1;

 int a1 = 0, a2 = 0;

 for(int t = 0; t < POINTS; t++) {

 a1 += table[tabidx1++] * input[bufidx] >> 15;

 a2 += table[tabidx2++] * input[bufidx] >> 15;

 bufidx++;

 }

 int out = a1 + ((a2 - a1) * (inputFrac & INTERP_BITMASK) >> INTERP_SHIFT);

 lBuf[pos] += out * lAmp >> FP_SHIFT;

 rBuf[pos] += out * rAmp >> FP_SHIFT;

 pos++;

 inputFrac += step;

 inputPos += inputFrac >> FP_SHIFT;

 inputFrac &= FP_MASK;

 }

 }

}

16-to-8-bit first-order dither

	Author or source: Jon Watte

	Type: First order error feedforward dithering code

	Created: 2002-04-12 13:52:36

notes

This is about as simple a dithering algorithm as you can implement, but it's likely to
sound better than just truncating to N bits.

Note that you might not want to carry forward the full difference for infinity. It's
probably likely that the worst performance hit comes from the saturation conditionals,
which can be avoided with appropriate instructions on many DSPs and integer SIMD type
instructions, or CMOV.

Last, if sound quality is paramount (such as when going from > 16 bits to 16 bits) you
probably want to use a higher-order dither function found elsewhere on this site.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	// This code will down-convert and dither a 16-bit signed short
// mono signal into an 8-bit unsigned char signal, using a first
// order forward-feeding error term dither.

#define uchar unsigned char

void dither_one_channel_16_to_8(short * input, uchar * output, int count, int * memory)
{
 int m = *memory;
 while(count-- > 0) {
 int i = *input++;
 i += m;
 int j = i + 32768 - 128;
 uchar o;
 if(j < 0) {
 o = 0;
 }
 else if(j > 65535) {
 o = 255;
 }
 else {
 o = (uchar)((j>>8)&0xff);
 }
 m = ((j-32768+128)-i);
 *output++ = o;
 }
 *memory = m;
}

3rd order Spline interpollation

	Author or source: Dave from Muon Software, originally from Josh Scholar

	Created: 2002-01-17 03:14:54

notes

(from Joshua Scholar about Spline interpollation in general...)
According to sampling theory, a perfect interpolation could be found by replacing each
sample with a sinc function centered on that sample, ringing at your target nyquest
frequency, and at each target point you just sum all of contributions from the sinc
functions of every single point in source.
The sinc function has ringing that dies away very slowly, so each target sample will have
to have contributions from a large neighborhood of source samples. Luckily, by definition
the sinc function is bandwidth limited, so once we have a source that is prefilitered for
our target nyquest frequency and reasonably oversampled relative to our nyquest frequency,
ordinary interpolation techniques are quite fruitful even though they would be pretty
useless if we hadn't oversampled.

We want an interpolation routine that at very least has the following characteristics:

1. Obviously it's continuous. But since finite differencing a signal (I don't really know
about true differentiation) is equivalent to a low frequency attenuator that drops only
about 6 dB per octave, continuity at the higher derivatives is important too.

2. It has to be stiff enough to find peaks when our oversampling missed them. This is
where what I said about the combination the sinc function's limited bandwidth and
oversampling making interpolation possible comes into play.

I've read some papers on splines, but most stuff on splines relates to graphics and uses a
control point descriptions that is completely irrelevant to our sort of interpolation. In
reading this stuff I quickly came to the conclusion that splines:

1. Are just piecewise functions made of polynomials designed to have some higher order
continuity at the transition points.

2. Splines are highly arbitrary, because you can choose arbitrary derivatives (to any
order) at each transition. Of course the more you specify the higher order the polynomials
will be.

3. I already know enough about polynomials to construct any sort of spline. A polynomial
through 'n' points with a derivative specified at 'm[1]' points and second derivatives
specified at 'm[2]' points etc. will be a polynomial of the order n-1+m[1]+m[2]...

A way to construct third order splines (that admittedly doesn't help you construct higher
order splines), is to linear interpolate between two parabolas. At each point (they are
called knots) you have a parabola going through that point, the previous and the next
point. Between each point you linearly interpolate between the polynomials for each point.
This may help you imagine splines.

As a starting point I used a polynomial through 5 points for each knot and used MuPad (a
free Mathematica like program) to derive a polynomial going through two points (knots)
where at each point it has the same first two derivatives as a 4th order polynomial
through the surrounding 5 points. My intuition was that basing it on polynomials through 3
points wouldn't be enough of a neighborhood to get good continuity. When I tested it, I
found that not only did basing it on 5 point polynomials do much better than basing it on
3 point ones, but that 7 point ones did nearly as badly as 3 point ones. 5 points seems to
be a sweet spot.

However, I could have set the derivatives to a nearly arbitrary values - basing the values
on those of polynomials through the surrounding points was just a guess.

I've read that the math of sampling theory has different interpretation to the sinc
function one where you could upsample by making a polynomial through every point at the
same order as the number of points and this would give you the same answer as sinc
function interpolation (but this only converges perfectly when there are an infinite
number of points). Your head is probably spinning right now - the only point of mentioning
that is to point out that perfect interpolation is exactly as stiff as a polynomial
through the target points of the same order as the number of target points.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	//interpolates between L0 and H0 taking the previous (L1) and next (H1)
points into account
inline float ThirdInterp(const float x,const float L1,const float L0,const
float H0,const float H1)
{
 return
 L0 +
 .5f*
 x*(H0-L1 +
 x*(H0 + L0*(-2) + L1 +
 x*((H0 - L0)*9 + (L1 - H1)*3 +
 x*((L0 - H0)*15 + (H1 - L1)*5 +
 x*((H0 - L0)*6 + (L1 - H1)*2)))));
}

Comments

	Date: 2002-05-21 06:14:20

	By: moc.a@a

What is x ?

	Date: 2002-06-09 19:45:59

	By: yahoo.co.uk@sewar_ekim

The samples being interpolated represent the wave amplitude at a particular instant of time, T - an impulse train. So each sample is the amplitude at T=0,1,2,3 etc.

The purpose of interpolation is to determine the amplitude, a, for an arbitrary t, where t is any real number:

 p1 p0 a n0 n1
 : : : : :
 0-------1---t---2-------3------> T
 : :
 : :
 <-x->

x = t - T(p0)

-
myk

	Date: 2002-06-09 19:53:03

	By: yahoo.co.uk@sewar_ekim

Dang! My nice diagram had its spacing stolen, and it now makes no sense!

p1, p0, n0, n1 are supposed to line up with 0,1,2,3 respectively. a is supposed to line up with the t. And finally, <-x-> spans between 1 and t.

-
myk

	Date: 2002-09-16 02:34:30

	By: lc.arret@assenacf

1.- What is 5f ?

2.- How I can test this procedure?.

Thank you

	Date: 2003-04-15 10:59:26

	By: moc.oohay@SIHT_EVOMER_ralohcshsoj

This is years later. but just in case anyone has the same problem as fcanessa... In C or C++ you can append an 'f' to a number to make it single precision, so .5f is the same as .5

	Date: 2012-07-10 13:51:17

	By: ac.cisum-mutnauq@noidc

About that thing you've said "5 point seems to be the sweet spot". Well, it might depends on the sampling rate.

5-point spline interpollation

	Author or source: Joshua Scholar,David Waugh

	Type: interpollation

	Created: 2002-01-17 03:12:34

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	//nMask = sizeofwavetable-1 where sizeofwavetable is a power of two.
double interpolate(double* wavetable, int nMask, double location)
{
 /* 5-point spline*/

 int nearest_sample = (int) location;
 double x = location - (double) nearest_sample;

 double p0=wavetable[(nearest_sample-2)&nMask];
 double p1=wavetable[(nearest_sample-1)&nMask];
 double p2=wavetable[nearest_sample];
 double p3=wavetable[(nearest_sample+1)&nMask];
 double p4=wavetable[(nearest_sample+2)&nMask];
 double p5=wavetable[(nearest_sample+3)&nMask];

 return p2 + 0.04166666666*x*((p3-p1)*16.0+(p0-p4)*2.0
 + x *((p3+p1)*16.0-p0-p2*30.0- p4
 + x *(p3*66.0-p2*70.0-p4*33.0+p1*39.0+ p5*7.0- p0*9.0
 + x *(p2*126.0-p3*124.0+p4*61.0-p1*64.0- p5*12.0+p0*13.0
 + x *((p3-p2)*50.0+(p1-p4)*25.0+(p5-p0)*5.0)))));
};

Comments

	Date: 2003-05-27 12:20:46

	By: moc.oohay@SIHTEVOMERralohcshsoj

The code works much better if you oversample before interpolating. If you oversample enough (maybe 4 to 6 times oversampling) then the results are audiophile quality.

	Date: 2010-08-26 20:55:45

	By: moc.oohay@xofirgomsnart

This looks old...but if anybody reads this:
What do you mean by oversample first? That is practically what you are doing with interpolation. For example, if you want to oversample 6x, you would interpolate 5 evenly spaced points in between p2 and p3 using 5 points at base frequency centered around p2. The 5-point spline interpolation seems like a lower CPU algorithm than a good sinc interpolation, and as a bonus it does not have much of a transient response (only 5 samples worth).

My main target application for something like this is delay line interpolation where there is a concern regarding high frequency notch depth...5th order interpolation is certainly an improvement over linear interpolation :)

	Date: 2012-10-04 08:00:31

	By: Josh Scholar

By oversample I meant do a windowed sinc doubling oversample a couple times.

The point is that a 4 times oversample can be based on table values and only gives you points exactly 1/4, 1/2 and 3/4 between the samples.

Then the spline can be used to interpolate totally arbitrary points between those, say speeding up and slowing down as needed, at very high quality.

If you don't oversample first, you'll get an audible amount of aliasing, though not as much as a linear interpolation. Unless the source has a lot of roll off (which is equivalent to it being oversampled anyway).

	Date: 2014-08-16 17:55:33

	By: moc.liamg@rellimennad.sirhc

Can any explain the derivation of this?

Allocating aligned memory

	Author or source: Benno Senoner

	Type: memory allocation

	Created: 2002-01-17 03:08:46

notes

we waste up to align_size + sizeof(int) bytes when we alloc a memory area.
We store the aligned_ptr - unaligned_ptr delta in an int located before the aligned area.
This is needed for the free() routine since we need to free all the memory not only the
aligned area.
You have to use aligned_free() to free the memory allocated with aligned_malloc() !

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	/* align_size has to be a power of two !! */
void *aligned_malloc(size_t size, size_t align_size) {

 char *ptr,*ptr2,*aligned_ptr;
 int align_mask = align_size - 1;

 ptr=(char *)malloc(size + align_size + sizeof(int));
 if(ptr==NULL) return(NULL);

 ptr2 = ptr + sizeof(int);
 aligned_ptr = ptr2 + (align_size - ((size_t)ptr2 & align_mask));

 ptr2 = aligned_ptr - sizeof(int);
 *((int *)ptr2)=(int)(aligned_ptr - ptr);

 return(aligned_ptr);
}

void aligned_free(void *ptr) {

 int *ptr2=(int *)ptr - 1;
 ptr -= *ptr2;
 free(ptr);
}

Antialiased Lines

	Author or source: moc.xinortceletrams@urugra

	Type: A slow, ugly, and unoptimized but short method to perform antialiased lines in a framebuffer

	Created: 2004-04-07 09:38:53

notes

Simple code to perform antialiased lines in a 32-bit RGBA (1 byte/component) framebuffer.

pframebuffer <- unsigned char* to framebuffer bytes (important: Y flipped line order!
[like in the way Win32 CreateDIBSection works...])

client_height=framebuffer height in lines
client_width=framebuffer width in pixels (not in bytes)

This doesnt perform any clip checl so it fails if coordinates are set out of bounds.

sorry for the engrish

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

	//
// By Arguru
//
void PutTransPixel(int const x,int const y,UCHAR const r,UCHAR const g,UCHAR const b,UCHAR const a)
{
 unsigned char* ppix=pframebuffer+(x+(client_height-(y+1))*client_width)*4;
 ppix[0]=((a*b)+(255-a)*ppix[0])/256;
 ppix[1]=((a*g)+(255-a)*ppix[1])/256;
 ppix[2]=((a*r)+(255-a)*ppix[2])/256;
}

void LineAntialiased(int const x1,int const y1,int const x2,int const y2,UCHAR const r,UCHAR const g,UCHAR const b)
{
 // some useful constants first
 double const dw=x2-x1;
 double const dh=y2-y1;
 double const slx=dh/dw;
 double const sly=dw/dh;

 // determine wichever raster scanning behaviour to use
 if(fabs(slx)<1.0)
 {
 // x scan
 int tx1=x1;
 int tx2=x2;
 double raster=y1;

 if(x1>x2)
 {
 tx1=x2;
 tx2=x1;
 raster=y2;
 }

 for(int x=tx1;x<=tx2;x++)
 {
 int const ri=int(raster);

 double const in_y0=1.0-(raster-ri);
 double const in_y1=1.0-(ri+1-raster);

 PutTransPixel(x,ri+0,r,g,b,in_y0*255.0);
 PutTransPixel(x,ri+1,r,g,b,in_y1*255.0);

 raster+=slx;
 }
 }
 else
 {
 // y scan
 int ty1=y1;
 int ty2=y2;
 double raster=x1;

 if(y1>y2)
 {
 ty1=y2;
 ty2=y1;
 raster=x2;
 }

 for(int y=ty1;y<=ty2;y++)
 {
 int const ri=int(raster);

 double const in_x0=1.0-(raster-ri);
 double const in_x1=1.0-(ri+1-raster);

 PutTransPixel(ri+0,y,r,g,b,in_x0*255.0);
 PutTransPixel(ri+1,y,r,g,b,in_x1*255.0);

 raster+=sly;
 }
 }
}

Comments

	Date: 2004-02-11 12:53:12

	By: Gog

Sorry, but what does this have to do with music DSP ??

	Date: 2004-02-14 17:39:38

	By: moc.liamtoh@101_vap

well, for drawing envelopes, waveforms, etc on screen in your DSP app....

	Date: 2004-02-15 11:59:04

	By: Gog

But... there are TONS of graphic toolkits to do just that. No reason to "roll your own". One f.i. is GDI+ (works darn well to be honest), or if you want non-M$ (and better!) go with AGG at (http://www.antigrain.com). And there are even open-source cross-platform toolkits (if you want to do Unix and Mac without coding).
Graphics and GUIs is a very time-consuming task to do from scratch, therefore I think using libraries such as the above is the way to go, liberating energy to do the DSP stuff... ;-)

	Date: 2004-03-11 02:56:19

	By: Rich

I don't want a toolkit, I want antialiased line drawing and nothing more. Everything else is fine.

	Date: 2004-03-11 17:32:09

	By: Justin

Anyone know how to get the pointer to the framebuffer? Perhaps there is a different answer for different platforms?

	Date: 2004-09-12 07:39:28

	By: ed.stratnemesab@kcaahcs.leinad

you can also draw everything in a 2x (vertically and horizontally) higher resolution and then reduce the size again by always taking the average of 4 pixels. that works well.

	Date: 2008-11-20 18:07:21

	By: moc.liamg@okolila

I think it can be useful to those designing graphical synths.

But the Wu line algorithm is considerably more fast and works only with integers.

http://en.wikipedia.org/wiki/Xiaolin_Wu's_line_algorith

Automatic PDC system

	Author or source: Tebello Thejane

	Type: the type that actually works, completely

	Created: 2006-07-16 11:39:56

	Linked files: pdc.pdf.

notes

No, people, implementing PDC is actually not as difficult as you might think it is.

This paper presents a solution to the problem of latency inherent in audio effects
processors, and the two appendices give examples of the method being applied on Cubase SX
(with an example which its native half-baked PDC fails to solve properly) as well as a
convoluted example in FL Studio (taking advantage of the flexible routing capabilities
introduced in version 6 of the software). All that's necessary to understand it is a grasp
of basic algebra and an intermediate understanding of how music production software works
(no need to understand the Laplace transform, linear processes, sigma and integral
notation... YAY!).

Please do send me any feedback (kudos, errata, flames, job offers, questions, comments)
you might have - my email address is included in the paper - or simply use musicdsp.org's
own commenting system.

Tebello Thejane.

code

	1

	(I have sent the PDF to Bram as he suggested)

Comments

	Date: 2006-07-18 08:12:00

	By: moc.liamg@saoxyz

Oops! RBJ's first name is Robert, not Richard! Man, that's a bad one...

	Date: 2006-07-21 10:24:53

	By: moc.liamg@saoxyz

Okay, I've sent a fixed version to Bram. It should be uploaded shortly. Bigger diagrams, too, so there's less aliasing in Adode Acrobat Reader. Hopefully no more embarisingly bad errors (like misspelling my own name, or something...).

	Date: 2006-10-09 15:27:24

	By: moc.liamg@saoxyz

 The revised version may be found here:
http(:)//www.vormdicht.nl /misc/PDC_paper-rev.pdf
Naturally, you need to remove the brackets from the address.

Base-2 exp

	Author or source: Laurent de Soras

	Created: 2002-01-17 03:06:08

notes

Linear approx. between 2 integer values of val. Uses 32-bit integers. Not very efficient
but fastest than exp()
This code was designed for x86 (little endian), but could be adapted for big endian
processors.
Laurent thinks you just have to change the (*(1 + (int *) &ret)) expressions and replace
it by (*(int *) &ret). However, He didn't test it.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	inline double fast_exp2 (const double val)
{
 int e;
 double ret;

 if (val >= 0)
 {
 e = int (val);
 ret = val - (e - 1);
 ((*(1 + (int *) &ret)) &= ~(2047 << 20)) += (e + 1023) << 20;
 }
 else
 {
 e = int (val + 1023);
 ret = val - (e - 1024);
 ((*(1 + (int *) &ret)) &= ~(2047 << 20)) += e << 20;
 }
 return (ret);
}

Comments

	Date: 2002-04-10 02:48:33

	By: gro.ecruosrv@cimotabus

Here is the code to detect little endian processor:

 union
 {
 short val;
 char ch[sizeof(short)];
 } un;
 un.val = 256; // 0x10;

 if (un.ch[1] == 1)
 {
 // then we're little
 }

I've tested the fast_exp2() on both little and big endian (intel, AMD, and motorola) processors, and the comment is correct.

Here is the completed function that works on all endian systems:

inline double fast_exp2(const double val)
{
 // is the machine little endian?
 union
 {
 short val;
 char ch[sizeof(short)];
 } un;
 un.val = 256; // 0x10;
 // if un.ch[1] == 1 then we're little

 // return 2 to the power of val (exp base2)
 int e;
 double ret;

 if (val >= 0)
 {
 e = int (val);
 ret = val - (e - 1);

 if (un.ch[1] == 1)
 ((*(1 + (int *) &ret)) &= ~(2047 << 20)) += (e + 1023) << 20;
 else
 ((*((int *) &ret)) &= ~(2047 << 20)) += (e + 1023) << 20;
 }
 else
 {
 e = int (val + 1023);
 ret = val - (e - 1024);

 if (un.ch[1] == 1)
 ((*(1 + (int *) &ret)) &= ~(2047 << 20)) += e << 20;
 else
 ((*((int *) &ret)) &= ~(2047 << 20)) += e << 20;
 }

 return ret;
}

Bit-Reversed Counting

	Author or source: moc.oohay@ljbliam

	Created: 2004-06-19 10:10:39

notes

Bit-reversed ordering comes up frequently in FFT implementations. Here is a non-branching
algorithm (given in C) that increments the variable "s" bit-reversedly from 0 to N-1,
where N is a power of 2.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	int r = 0; // counter
int s = 0; // bit-reversal of r/2
int N = 256; // N can be any power of 2
int N2 = N << 1; // N<<1 == N*2

do {
 printf("%u ", s);
 r += 2;
 s ^= N - (N / (r&-r));
}
while (r < N2);

Comments

	Date: 2005-08-10 07:20:50

	By: moc.oohay@r_adihaw

This will give the bit reversal of N number of elements(where N is a power of 2). If we want reversal of a particular number out of N,is there any optimised way other than doing bit wise operations

	Date: 2006-03-30 23:17:55

	By: moc.oohay@ljbliam

There's a better way that doesn't require counting, branching, or division. It's probably the fastest way of doing bit reversal without a special instruction. I got this from Jörg's FXT book:

unsigned r; // value to be bit-reversed

// Assume r is 32 bits
r = ((r & 0x55555555) << 1) | ((r & 0xaaaaaaaa) >> 1);
r = ((r & 0x33333333) << 2) | ((r & 0xcccccccc) >> 2);
r = ((r & 0x0f0f0f0f) << 4) | ((r & 0xf0f0f0f0) >> 4);
r = ((r & 0x00ff00ff) << 8) | ((r & 0xff00ff00) >> 8);
r = ((r & 0x0000ffff) << 16) | ((r & 0xffff0000) >> 16);

	Date: 2010-09-20 15:22:09

	By: ed.bew@mfyknarf

The way mentioned in the comment might be faster but is fixed to 32 bits. If you do a FFT with 1024 points you need 10 bits bit-reversal. Thus the originally mentioned algorithm is more flexible because it works for any bit width. If you use it for FFT (that's actually the only case you normally use bit-reversal) you either need to calculate the bit-reversal for each array index, so counting upwards in bit-reversal order is not such a bad way. I'm not sure whether the second algorithm is really faster than the counter if you consider the whole array. (There are 5 instructions per line making 25 instructions in sum for each calculated index with the second algorithm compared to 7 instructions in the counting algorithm)

Block/Loop Benchmarking

	Author or source: moc.xinortceletrams@urugra

	Type: Benchmarking Tool

	Created: 2003-06-24 07:30:43

notes

Requires CPU with RDTSC support

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	// Block-Process Benchmarking Code using rdtsc
// useful for measure DSP block stuff
// (based on Intel papers)
// 64-bit precission
// VeryUglyCode(tm) by Arguru

// globals
UINT time,time_low,time_high;

// call this just before enter your loop or whatever
void bpb_start()
{
 // read time stamp to EAX
 __asm rdtsc;
 __asm mov time_low,eax;
 __asm mov time_high,edx;
}

// call the following function just after your loop
// returns average cycles wasted per sample
UINT bpb_finish(UINT const num_samples)
{
 __asm rdtsc
 __asm sub eax,time_low;
 __asm sub edx,time_high;
 __asm div num_samples;
 __asm mov time,eax;
 return time;
}

Comments

	Date: 2004-05-16 18:20:13

	By: moc.sulp.52retsinnab@etep

If running windows on a mutliprocessor system, apparently it is worth calling:

SetThreadAffinityMask(GetCurrentThread(), 1);

to reduce artefacts.

(see http://msdn.microsoft.com/visualc/vctoolkit2003/default.aspx?pull=/library/en-us/dv_vstechart/html/optimization.asp)

	Date: 2004-08-26 00:33:18

	By: rf.eerf@uerum.emualliug

__asm sub eax,time_low;
__asm sub edx,time_high;

should be

__asm sub eax,time_low
__asm SBB edx,time_high // substract with borrow

Branchless Clipping

	Author or source: ku.oc.snosrapsd@psdcisum

	Type: Clipping at 0dB, with none of the usual ‘if..then..’

	Created: 2005-10-30 10:33:19

notes

I was working on something that I wanted to ensure that the signal never went above 0dB,
and a branchless solution occurred to me.

It works by playing with the structure of a single type, shifting the sign bit down to
make a new mulitplicand.

calling MaxZerodB(mydBSample) will ensure that it will never stray over 0dB.
By playing with signs or adding/removing offsets, this offers a complete branchless
limiting solution, no matter whether dB or not (after all, they're all just numbers...).

eg:
Limit to <=0 : sample:=MaxZerodB(sample);
Limit to <=3 : sample:=MaxZerodB(sample-3)+3;
Limit to <=-4 : sample:=MaxZerodB(sample+4)-4;

Limit to >=0 : sample:=-MaxZerodB(-sample);
Limit to >=2 : sample:=-MaxZerodB(-sample+2)+2;
Limit to >=-1.5: sample:=-MaxZerodB(-sample-1.5)-1.5;

Whether it actually saves any CPU cycles remains to be seen, but it was an interesting
diversion for half an hour :)

[Translating from pascal to other languages shouldn't be too hard, and for doubles, you'll
need to fiddle it abit :)]

code

	1
2
3
4
5
6
7
8
9

	function MaxZerodB(dBin:single):single;
var tmp:longint;
begin
 //given that leftmost bit of a longint indicates the negative,
 // if we shift that down to bit0, and multiply dBin by that
 // it will return dBin, or zero :)
 tmp:=(longint((@dBin)^) and $80000000) shr 31;
 result:=dBin*tmp;
end;

Comments

	Date: 2005-11-29 18:33:09

	By: hotpop.com@blargg

Since most processors include a sign-preserving right shift, you can right shift by 31 to end up with either -1 (all bits set) or 0, then mask the original value with it:

out = (in >> 31) & in;

	Date: 2005-12-01 20:33:28

	By: moc.liamg@tramum

I prefer this method, using a sign-preserving shift, as it can clip a signal to arbitrary bounds:

over = upper_limit - samp
mask = over >> 31
over = over & mask
samp = samp + over
over = samp - lower_limit
mask = over >> 31
over = over & mask
samp = samp - over

Is it faster? Maybe on modern machines with 20-plus-stage pipelines and if the signal is clipped often, as the branches are not predictable.

	Date: 2006-03-22 17:53:44

	By: ku.oc.snosrapsd@psdcisum

hmm.. Did some looking into the sign preserving thing. My laptop has an P3 which didn't preserve as mentioned, and my work PC (P4HT) didn't either. Maybe its an AMD or motorola thing :)

unless it's how delphi interprets the shr.. what does a C++ compiler generate for '>>' ?

	Date: 2006-03-28 14:42:44

	By: moc.liamg@tramum

C and C++ have sign-preserving shifts. If the value is negative, a right shift will add ones onto the left hand side (thus -2 becomes -1 etc).

Java also has a non-sign-preserving right shift operator (>>>).

I tried googling for information on how Delphi handles shifts, but nothing turned up. Looks like you might need to use in-line assembly :/

	Date: 2006-03-30 02:47:35

	By: ed.ko0@oreb

Here my SAR function for Delphi+FreePascal

FUNCTION SAR(Value,Shift:INTEGER):INTEGER; {$IFDEF CPU386}ASSEMBLER; REGISTER;{$ELSE}{$IFDEF FPC}INLINE;{$ELSE}REGISTER;{$ENDIF}{$ENDIF}
{$IFDEF CPU386}
ASM
 MOV ECX,EDX
 SAR EAX,CL
END;
{$ELSE}
BEGIN
 RESULT:=(Value SHR Shift) OR (($FFFFFFFF+(1-((Value AND (1 SHL 31)) SHR 31) AND ORD(Shift<>0))) SHL (32-Shift));
END;
{$ENDIF}

	Date: 2006-03-30 03:19:59

	By: ed.ko0@oreb

Ny branchless clipping functions (the first is faster than the second)

FUNCTION Clip(Value,Min,Max:SINGLE):SINGLE; ASSEMBLER; STDCALL;
CONST Constant0Dot5:SINGLE=0.5;
ASM
 FLD DWORD PTR Value
 FLD DWORD PTR Min
 FLD DWORD PTR Max

 FLD ST(2)
 FSUB ST(0),ST(2)
 FABS
 FADD ST(0),ST(2)
 FADD ST(0),ST(1)

 FLD ST(3)
 FSUB ST(0),ST(2)
 FABS
 FSUBP ST(1),ST(0)
 FMUL DWORD PTR Constant0Dot5

 FFREE ST(4)
 FFREE ST(3)
 FFREE ST(2)
 FFREE ST(1)
END;

FUNCTION ClipDSP(Value:SINGLE):SINGLE; {$IFDEF CPU386} ASSEMBLER; REGISTER;
ASM
 MOV EAX,DWORD PTR Value
 AND EAX,$80000000

 AND DWORD PTR Value,$7FFFFFFF

 FLD DWORD PTR Value
 FLD1
 FSUBP ST(1),ST(0)
 FSTP DWORD PTR Value

 MOV EDX,DWORD PTR Value
 AND EDX,$80000000
 SHR EDX,31
 NEG EDX
 AND DWORD PTR Value,EDX

 FLD DWORD PTR Value
 FLD1
 FADDP ST(1),ST(0)
 FSTP DWORD PTR Value

 OR DWORD PTR Value,EAX

 FLD DWORD PTR Value
END;
{$ELSE}
VAR ValueCasted:LONGWORD ABSOLUTE Value;
 Sign:LONGWORD;
BEGIN
 Sign:=ValueCasted AND $80000000;
 ValueCasted:=ValueCasted AND $7FFFFFFF;
 Value:=Value-1;
 ValueCasted:=ValueCasted AND (-LONGWORD((ValueCasted AND $80000000) SHR 31));
 Value:=Value+1;
 ValueCasted:=ValueCasted OR Sign;
 RESULT:=Value;
END;
{$ENDIF}

Calculate notes (java)

	Author or source: gro.kale@ybsral

	Type: Java class for calculating notes with different in params

	Created: 2002-06-21 02:33:13

	Linked files: Frequency.java.

notes

Converts between string notes and frequencies and back. I vaguely remember writing bits of
it, and I got it off the net somwhere so dont ask me

 - Larsby

Center separation in a stereo mixdown

	Author or source: Thiburce BELAVENTURE

	Created: 2004-02-11 14:00:08

notes

One year ago, i found a little trick to isolate or remove the center in a stereo mixdown.

My method use the time-frequency representation (FFT). I use a min fuction between left
and right channels (for each bin) to create the pseudo center. I apply a phase correction,
and i substract this signal to the left and right signals.

Then, we can remix them after treatments (or without) to produce a stereo signal in
output.

This algorithm (I called it "TBIsolator") is not perfect, but the result is very nice,
better than the phase technic (L substract R...). I know that it is not mathematically
correct, but as an estimation of the center, the exact match is very hard to obtain. So,
it is not so bad (just listen the result and see).

My implementation use a 4096 FFT size, with overlap-add method (factor 2). With a lower
FFT size, the sound will be more dirty, and with a 16384 FFT size, the center will have
too much high frequency (I don't explore why this thing appears).

I just post the TBIsolator code (see FFTReal in this site for implement the FFT engine).

pIns and pOuts buffers use the representation of the FFTReal class (0 to N/2-1: real
parts, N/2 to N-1: imaginary parts).

Have fun with the TBIsolator algorithm ! I hope you enjoy it and if you enhance it,
contact me (it's my baby...).

P.S.: the following function is not optimized.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	/* === */
/* nFFTSize must be a power of 2 */
/* === */
/* Usage examples: */
/* - suppress the center: fAmpL = 1.f, fAmpC = 0.f, fAmpR = 1.f */
/* - keep only the center: fAmpL = 0.f, fAmpC = 1.f, fAmpR = 0.f */
/* === */

void processTBIsolator(float *pIns[2], float *pOuts[2], long nFFTSize, float fAmpL, float fAmpC, float fAmpR)
{
 float fModL, fModR;
 float fRealL, fRealC, fRealR;
 float fImagL, fImagC, fImagR;
 double u;

 for (long i = 0, j = nFFTSize / 2; i < nFFTSize / 2; i++)
 {
 fModL = pIns[0][i] * pIns[0][i] + pIns[0][j] * pIns[0][j];
 fModR = pIns[1][i] * pIns[1][i] + pIns[1][j] * pIns[1][j];

 // min on complex numbers
 if (fModL > fModR)
 {
 fRealC = fRealR;
 fImagC = fImagR;
 }
 else
 {
 fRealC = fRealL;
 fImagC = fImagL;
 }

 // phase correction...
 u = fabs(atan2(pIns[0][j], pIns[0][i]) - atan2(pIns[1][j], pIns[1][i])) / 3.141592653589;

 if (u >= 1) u -= 1.;

 u = pow(1 - u*u*u, 24);

 fRealC *= (float) u;
 fImagC *= (float) u;

 // center extraction...
 fRealL = pIns[0][i] - fRealC;
 fImagL = pIns[0][j] - fImagC;

 fRealR = pIns[1][i] - fRealC;
 fImagR = pIns[1][j] - fImagC;

 // You can do some treatments here...

 pOuts[0][i] = fRealL * fAmpL + fRealC * fAmpC;
 pOuts[0][j] = fImagL * fAmpL + fImagC * fAmpC;

 pOuts[1][i] = fRealR * fAmpR + fRealC * fAmpC;
 pOuts[1][j] = fImagR * fAmpR + fImagC * fAmpC;
 }
}

Comments

	Date: 2004-02-11 18:40:30

	By: moc.ecrubiht@cehcnamf

I am sorry, my source code is not totally correct.

1 - the for is:

for (long i = 0, j = nFFTSize / 2; i < nFFTSize / 2; i++, j++)

2 - the correct min is:

if (fModL > fModR)
{
 fRealC = pIns[1][i];
 fImagC = pIns[1][j];
}
else
{
 fRealC = pIns[0][i];
 fImagC = pIns[0][j];
}

3 - in the phase correction:

if (u >= 1) u -= 1.;

must be replaced by:

if (u >= 1) u = 2 - u;

Thiburce 'TB' BELAVENTURE

Center separation in a stereo mixdown

	Author or source: Thiburce BELAVENTURE

	Created: 2004-02-14 15:14:09

notes

One year ago, i found a little trick to isolate or remove the center in a stereo mixdown.

My method use the time-frequency representation (FFT). I use a min fuction between left
and right channels (for each bin) to create the pseudo center. I apply a phase correction,
and i substract this signal to the left and right signals.

Then, we can remix them after treatments (or without) to produce a stereo signal in
output.

This algorithm (I called it "TBIsolator") is not perfect, but the result is very nice,
better than the phase technic (L substract R...). I know that it is not mathematically
correct, but as an estimation of the center, the exact match is very hard to obtain. So,
it is not so bad (just listen the result and see).

My implementation use a 4096 FFT size, with overlap-add method (factor 2). With a lower
FFT size, the sound will be more dirty, and with a 16384 FFT size, the center will have
too much high frequency (I don't explore why this thing appears).

I just post the TBIsolator code (see FFTReal in this site for implement the FFT engine).

pIns and pOuts buffers use the representation of the FFTReal class (0 to N/2-1: real
parts, N/2 to N-1: imaginary parts).

Have fun with the TBIsolator algorithm ! I hope you enjoy it and if you enhance it,
contact me (it's my baby...).

P.S.: the following function is not optimized.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	/* === */
/* nFFTSize must be a power of 2 */
/* === */
/* Usage examples: */
/* - suppress the center: fAmpL = 1.f, fAmpC = 0.f, fAmpR = 1.f */
/* - keep only the center: fAmpL = 0.f, fAmpC = 1.f, fAmpR = 0.f */
/* === */

void processTBIsolator(float *pIns[2], float *pOuts[2], long nFFTSize, float fAmpL, float fAmpC, float fAmpR)
{
 float fModL, fModR;
 float fRealL, fRealC, fRealR;
 float fImagL, fImagC, fImagR;
 double u;

 for (long i = 0, j = nFFTSize / 2; i < nFFTSize / 2; i++)
 {
 fModL = pIns[0][i] * pIns[0][i] + pIns[0][j] * pIns[0][j];
 fModR = pIns[1][i] * pIns[1][i] + pIns[1][j] * pIns[1][j];

 // min on complex numbers
 if (fModL > fModR)
 {
 fRealC = fRealR;
 fImagC = fImagR;
 }
 else
 {
 fRealC = fRealL;
 fImagC = fImagL;
 }

 // phase correction...
 u = fabs(atan2(pIns[0][j], pIns[0][i]) - atan2(pIns[1][j], pIns[1][i])) / 3.141592653589;

 if (u >= 1) u -= 1.;

 u = pow(1 - u*u*u, 24);

 fRealC *= (float) u;
 fImagC *= (float) u;

 // center extraction...
 fRealL = pIns[0][i] - fRealC;
 fImagL = pIns[0][j] - fImagC;

 fRealR = pIns[1][i] - fRealC;
 fImagR = pIns[1][j] - fImagC;

 // You can do some treatments here...

 pOuts[0][i] = fRealL * fAmpL + fRealC * fAmpC;
 pOuts[0][j] = fImagL * fAmpL + fImagC * fAmpC;

 pOuts[1][i] = fRealR * fAmpR + fRealC * fAmpC;
 pOuts[1][j] = fImagR * fAmpR + fImagC * fAmpC;
 }
}

Cheap pseudo-sinusoidal lfo

	Author or source: moc.regnimmu@regnimmuf

	Created: 2004-04-07 09:39:28

notes

Although the code is written in standard C++, this algorithm is really better suited for
dsps where one can take advantage of multiply-accumulate instructions and where the
required phase accumulator can be easily implemented by masking a counter.

It provides a pretty cheap roughly sinusoidal waveform that is good enough for an lfo.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	// x should be between -1.0 and 1.0
inline
double pseudo_sine(double x)
{
 // Compute 2*(x^2-1.0)^2-1.0
 x *= x;
 x -= 1.0;
 x *= x;
 // The following lines modify the range to lie between -1.0 and 1.0.
 // If a range of between 0.0 and 1.0 is acceptable or preferable
 // (as in a modulated delay line) then you can save some cycles.
 x *= 2.0;
 x -= 1.0;
}

Comments

	Date: 2004-03-31 09:08:57

	By: ed.bew@hakkeb

You forgot a

return x;

	Date: 2004-04-05 19:43:15

	By: moc.regnimmu@regnimmuf

Doh! You're right.

-Frederick

Clipping without branching

	Author or source: Laurent de Soras (moc.ecrofmho@tnerual)

	Type: Min, max and clip

	Created: 2004-04-07 09:35:57

notes

It may reduce accuracy for small numbers. I.e. if you clip to [-1; 1], fractional part of
the result will be quantized to 23 bits (or more, depending on the bit depth of the
temporary results). Thus, 1e-20 will be rounded to 0. The other (positive) side effect is
the denormal number elimination.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	float max (float x, float a)
{
 x -= a;
 x += fabs (x);
 x *= 0.5;
 x += a;
 return (x);
}

float min (float x, float b)
{
 x = b - x;
 x += fabs (x)
 x *= 0.5;
 x = b - x;
 return (x);
}

float clip (float x, float a, float b)
{
 x1 = fabs (x-a);
 x2 = fabs (x-b);
 x = x1 + (a+b);
 x -= x2;
 x *= 0.5;
 return (x);
}

Comments

	Date: 2002-04-15 04:05:45

	By: ten.xfer@spelk

AFAIK, the fabs() is using if()...

	Date: 2002-05-27 11:48:41

	By: moc.tecollev@ydna

fabs/fabsf do not use if and are quicker than:
if (x<0) x = -x;
Do the speed tests yourself if you don't believe me!

	Date: 2002-06-26 09:55:50

	By: moc.noicratse@ajelak

Depends on CPU and optimization options, but yes, Visual C++/x86/full optimization uses intrinsic fabs, which is very cool.

	Date: 2003-10-21 15:38:40

	By: moc.semag-allirreug@regninned.trannel

And ofcourse you could always use one of those nifty bit-tricks for fabs :)

(Handy when you don't want to link with the math-library, like when coding a softsynth for a 4Kb-executable demo :))

	Date: 2004-01-31 04:24:22

	By: moc.dh2a@ydna

according to my benchmarks (using the cpu clock cycle counter), fabs and the 'nifty bit tricks' have identicle performance characterstics, EXCEPT that with the nifty bit trick, sometimes it has a -horrible- penalty, which depends on the context..., maybe it does not optimize consistently? I use libmath fabs now. (i'm using gcc-3.3/linux on a P3)

	Date: 2004-04-12 05:07:58

	By: moc.noicratse@ajelak

Precision can be a major problem with these. In particular, if you have an algorithm that blows up with negative input, don't guard via clip(in, 0.0, 1.0) - it will occasionally go negative.

Constant-time exponent of 2 detector

	Author or source: Brent Lehman (moc.oohay@ljbliam)

	Created: 2002-02-10 12:53:15

notes

In your common FFT program, you want to make sure that the frame you're working with has a
size that is a power of 2. This tells you in just a few operations. Granted, you won't
be using this algorithm inside a loop, so the savings aren't that great, but every little
hack helps ;)

code

	1
2
3
4
5
6

	// Quit if size isn't a power of 2
if ((-size ^ size) & size) return;

// If size is an unsigned int, the above might not compile.
// You'd want to use this instead:
if (((~size + 1) ^ size) & size) return;

Comments

	Date: 2002-02-12 03:20:11

	By: moc.oohay@xrotcnuf

I think I prefer:

if (! (size & (size - 1))) return;

I'm not positive this is fewer instructions than the above, but I think it's easier to see why it works (n and n-1 will share bits unless n is a power of two), and it doesn't require two's-complement.

 - Tom 7

Conversion and normalization of 16-bit sample to a floating point number

	Author or source: George Yohng

	Created: 2007-05-02 13:34:21

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	float out;
signed short in;

// This code does the same as
// out = ((float)in)*(1.0f/32768.0f);
//
// Depending on the architecture and conversion settings,
// it might be more optimal, though it is always
// advisable to check its speed against genuine
// algorithms.

((unsigned &)out)=0x43818000^in;
out-=259.0f;

Comments

	Date: 2007-05-15 06:09:54

	By: moc.mot@lx_iruy

Hi George Yohng

I tried it... but it's create the heavy noise!!

	Date: 2007-09-20 17:51:12

	By: George Yohng

Correction:
 ((unsigned &)out)=0x43818000^((unsigned short)in);
 out-=259.0f;

(needs to have a cast to 'unsigned short')

Conversions on a PowerPC

	Author or source: James McCartney

	Type: motorola ASM conversions

	Created: 2002-01-17 03:07:18

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	double ftod(float x) { return (double)x;
00000000: 4E800020 blr
 // blr == return from subroutine, i.e. this function is a noop

float dtof(double x) { return (float)x;
00000000: FC200818 frsp fp1,fp1
00000004: 4E800020 blr

int ftoi(float x) { return (int)x;
00000000: FC00081E fctiwz fp0,fp1
00000004: D801FFF0 stfd fp0,-16(SP)
00000008: 8061FFF4 lwz r3,-12(SP)
0000000C: 4E800020 blr

int dtoi(double x) { return (int)x;
00000000: FC00081E fctiwz fp0,fp1
00000004: D801FFF0 stfd fp0,-16(SP)
00000008: 8061FFF4 lwz r3,-12(SP)
0000000C: 4E800020 blr

double itod(int x) { return (double)x;
00000000: C8220000 lfd fp1,@1558(RTOC)
00000004: 6C608000 xoris r0,r3,$8000
00000008: 9001FFF4 stw r0,-12(SP)
0000000C: 3C004330 lis r0,17200
00000010: 9001FFF0 stw r0,-16(SP)
00000014: C801FFF0 lfd fp0,-16(SP)
00000018: FC200828 fsub fp1,fp0,fp1
0000001C: 4E800020 blr

float itof(int x) { return (float)x;
00000000: C8220000 lfd fp1,@1558(RTOC)
00000004: 6C608000 xoris r0,r3,$8000
00000008: 9001FFF4 stw r0,-12(SP)
0000000C: 3C004330 lis r0,17200
00000010: 9001FFF0 stw r0,-16(SP)
00000014: C801FFF0 lfd fp0,-16(SP)
00000018: EC200828 fsubs fp1,fp0,fp1
0000001C: 4E800020 blr

Cubic interpollation

	Author or source: Olli Niemitalo

	Type: interpollation

	Created: 2002-01-17 03:05:33

	Linked files: other001.gif.

notes

(see linkfile)
finpos is the fractional, inpos the integer part.

code

	1
2
3
4
5
6
7
8

	xm1 = x [inpos - 1];
x0 = x [inpos + 0];
x1 = x [inpos + 1];
x2 = x [inpos + 2];
a = (3 * (x0-x1) - xm1 + x2) / 2;
b = 2*x1 + xm1 - (5*x0 + x2) / 2;
c = (x1 - xm1) / 2;
y [outpos] = (((a * finpos) + b) * finpos + c) * finpos + x0;

Cure for malicious samples

	Author or source: moc.eh-u@sru

	Type: Filters Denormals, NaNs, Infinities

	Created: 2005-03-24 00:32:54

notes

A lot of incidents can happen during processing samples. A nasty one is denormalization,
which makes cpus consume insanely many cycles for easiest instructions.

But even worse, if you have NaNs or Infinities inside recursive structures, maybe due to
division by zero, all subsequent samples that are multiplied with these values will get
"infected" and become NaN or Infinity. Your sound makes BLIPPP and that was it, silence
from the speakers.

Thus I've written a small function that sets all of these cases to 0.0f.

You'll notice that I treat a buffer of floats as unsigned integers. And I avaoid branches
by using comparison results as 0 or 1.

When compiled with GCC, this function should not create any "hidden" branches, but you
should verify the assembly code anyway. Sometimes some parenthesis do the trick...

;) Urs

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	#ifndef UInt32
#define UInt32 unsigned int
#endif

void erase_All_NaNs_Infinities_And_Denormals(float* inSamples, int& inNumberOfSamples)
{
 UInt32* inArrayOfFloats = (UInt32*) inSamples;

 for (int i = 0; i < inNumberOfSamples; i++)
 {
 UInt32 sample = *inArrayOfFloats;
 UInt32 exponent = sample & 0x7F800000;

 // exponent < 0x7F800000 is 0 if NaN or Infinity, otherwise 1
 // exponent > 0 is 0 if denormalized, otherwise 1

 int aNaN = exponent < 0x7F800000;
 int aDen = exponent > 0;

 *inArrayOfFloats++ = sample * (aNaN & aDen);

 }
}

Comments

	Date: 2005-05-14 17:18:12

	By: dont-email-me

#include <inttypes.h>
and use std::uint32_t
or typedef (not #define)

int const & inNumberOfSamples

	Date: 2005-10-14 18:36:07

	By: DevilishHabib

Isn't it bad to declare variables within for loop?
If someone has VC++ standard (no optimizer included, thanks Bill :-() , the cycles gained by removing denormals, will be eaten by declaring 4 variables per loop cycle, so watch out !

	Date: 2007-05-11 05:51:36

	By: if.iki@xemxet

DevilishHabib, that's rubbish. It doesn't matter where the declaration is as long as the code works. Declaring outside the loop is the same thing (you can verify this).

Urs, nice code but you don't get rid of branches just like that. Comparision is comparision no matter what. Your code is equal to "int aNaN = exponent < 0x7F800000 ? 1 : 0;" which is equal to "int aNan = 0; if (exponent < 0x7F800000) aNan = 1;" If we are talking about x86 asm here, there is no instruction that would do the conditional assignment needed. MMX/SSE has it, though.

	Date: 2014-10-18 18:36:44

	By: none

texmex, nope, the result of < or > does not create any branches on x86.

Denormal DOUBLE variables, macro

	Author or source: Jon Watte

	Created: 2002-03-17 15:44:31

notes

Use this macro if you want to find denormal numbers and you're using doubles...

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	#if PLATFORM_IS_BIG_ENDIAN
#define INDEX 0
#else
#define INDEX 1
#endif
inline bool is_denormal(double const & d) {
 assert(sizeof(d) == 2*sizeof(int));
 int l = ((int *)&d)[INDEX];
 return (l&0x7fe00000) != 0;
}

Comments

	Date: 2005-05-14 17:19:48

	By: dont-email-me

put the #if inside the function itself

Denormal numbers

	Author or source: Compiled by Merlijn Blaauw

	Created: 2002-01-17 03:06:39

	Linked files: other001.txt.

notes

 this text describes some ways to avoid denormalisation. Denormalisation happens when
FPU's go mad processing very small numbers

Comments

	Date: 2004-01-31 05:20:38

	By: moc.dh2a@ydna

See also the entry about 'branchless min, max and clip' by Laurent Soras in this section,

Using the following function,

float clip (float x, float a, float b)
{
 x1 = fabs (x-a);
 x2 = fabs (x-b);
 x = x1 + (a+b);
 x -= x2;
 x *= 0.5;
 return (x);
}

If you apply clipping from -1.0 to 1.0 will have a side effect of squashing denormal numbers to zero due to loss of precision on the order of ~1.0.e-20. The upside is that it is branchless, but possibly more expensive than adding noise and certainly more so than adding a DC offset.

Denormal numbers, the meta-text

	Author or source: Laurent de Soras

	Created: 2002-02-15 00:16:30

	Linked files: denormal.pdf.

notes

This very interesting paper, written by Laurent de Soras (www.ohmforce.com) has everything
you ever wanted to know about denormal numbers! And it obviously descibes how you can get
rid of them too!

(see linked file)

Denormalization preventer

	Author or source: gol

	Created: 2005-03-31 16:57:07

notes

A fast tiny numbers sweeper using integer math. Only for 32bit floats. Den_Thres is your
32bit (normalized) float threshold, something small enough but big enough to prevent
future denormalizations.

EAX=input buffer
EDX=length
(adapt to your compiler)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 MOV ECX,EDX
 LEA EDI,[EAX+4*ECX]
 NEG ECX
 MOV EDX,Den_Thres
 SHL EDX,1
 XOR ESI,ESI

 @Loop:
 MOV EAX,[EDI+4*ECX]
 LEA EBX,[EAX*2]
 CMP EBX,EDX
 CMOVB EAX,ESI
 MOV [EDI+4*ECX],EAX

 INC ECX
 JNZ @Loop

Denormalization preventer

	Author or source: eb.tenyks@didid

	Created: 2006-08-05 16:37:20

notes

Because I still see people adding noise or offset to their signal to avoid slow
denormalization, here's a piece of code to zero out (near) tiny numbers instead.

Why zeroing out is better? Because a fully silent signal is better than a little offset,
or noise. A host or effect can detect silent signals and choose not to process them in a
safe way.
Plus, adding an offset or noise reduces huge packets of denormalization, but still leaves
some behind.
Also, truncating is what the DAZ (Denormals Are Zero) SSE flag does.

This code uses integer comparison, and a CMOV, so you need a Pentium Pro or higher.
There's no need for an SSE version, as if you have SSE code you're probably already using
the DAZ flag instead (but I advise plugins not to mess with the SSE flags, as the host is
likely to have DAZ switched on already). This is for FPU code. Should work much faster
than crap FPU comparison.

Den_Thres is your threshold, it cannot be denormalized (would be pointless). The function
is Delphi, if you want to adapt, just make sure EAX is the buffer and EDX is length
(Delphi register calling convention - it's not the same in C++).

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	const Den_Thres:Single=1/$1000000;

procedure PrevFPUDen_Buffer(Buffer:Pointer;Length:Integer);
asm
 PUSH ESI
 PUSH EDI
 PUSH EBX

 MOV ECX,EDX
 LEA EDI,[EAX+4*ECX]
 NEG ECX
 MOV EDX,Den_Thres
 SHL EDX,1
 XOR ESI,ESI

 @Loop:
 MOV EAX,[EDI+4*ECX]
 LEA EBX,[EAX*2]
 CMP EBX,EDX
 CMOVB EAX,ESI
 MOV [EDI+4*ECX],EAX

 INC ECX
 JNZ @Loop

 POP EBX
 POP EDI
 POP ESI
End;

Comments

	Date: 2006-08-14 05:36:29

	By: uh.etle.fni@yfoocs

You can zero out denormals by adding and subtracting a small number.

void kill_denormal_by_quantization(float &val)
{
 static const float anti_denormal = 1e-18;
 val += anti_denormal;
 val -= anti_denormal;
}

Reference: Laurent de Soras' great article on denormal numbers:
ldesoras.free.fr/doc/articles/denormal-en.pdf

I tend to add DC because it is faster than quantization. A slight DC offset (0.000000000000000001) won't hurt. That's -360 decibels...

	Date: 2006-08-14 09:20:43

	By: gol

>>You can zero out denormals by adding and subtracting a small number

But with drawbacks as explained in his paper.

As for the speed, not sure which is the faster. Especially since the FPU speed is too manufacturer-dependant (read: it's crap in pentiums), and mine is using integer.

>>A slight DC offset (0.000000000000000001) won't hurt

As I wrote, it really does.. hurt the sequencer, that can't detect pure silence and optimize things accordingly. A host can detect near-silence, but it can't know which offset value YOU chose, so may use a lower threshold.

	Date: 2006-08-14 09:33:35

	By: gol

Btw, I happen to see I had already posted this code, probably years ago, doh!

Anyway this version gives more explanation.

And here's more:
The LEA EBX,[EAX*2] is to get rid of the sign bit.
And the integer comparison of float values can be done providing both are the same sign (I'm not quite sure it works on denormals, but we don't care, since they're the ones we want to zero out, so our threshold won't be denormalized).

	Date: 2010-03-10 13:29:06

	By: moc.liamg@sisehtnysorpitna

You could also add input noise and assure output samples are reset to 0 if they're below a certain treshold, slightly higher than your noise volume. That ensures hosts can do proper tail detection and it's cheap.

Dither code

	Author or source: Paul Kellett

	Type: Dither with noise-shaping

	Created: 2002-01-17 03:13:20

notes

This is a simple implementation of highpass triangular-PDF dither (a good general-purpose
dither) with optional 2nd-order noise shaping (which lowers the noise floor by 11dB below
0.1 Fs).
The code assumes input data is in the range +1 to -1 and doesn't check for overloads!

To save time when generating dither for multiple channels you can re-use lower bits of a
previous random number instead of calling rand() again. e.g. r3=(r1 & 0x7F)<<8;

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 int r1, r2; //rectangular-PDF random numbers
 float s1, s2; //error feedback buffers
 float s = 0.5f; //set to 0.0f for no noise shaping
 float w = pow(2.0,bits-1); //word length (usually bits=16)
 float wi= 1.0f/w;
 float d = wi / RAND_MAX; //dither amplitude (2 lsb)
 float o = wi * 0.5f; //remove dc offset
 float in, tmp;
 int out;

//for each sample...

 r2=r1; //can make HP-TRI dither by
 r1=rand(); //subtracting previous rand()

 in += s * (s1 + s1 - s2); //error feedback
 tmp = in + o + d * (float)(r1 - r2); //dc offset and dither

 out = (int)(w * tmp); //truncate downwards
 if(tmp<0.0f) out--; //this is faster than floor()

 s2 = s1;
 s1 = in - wi * (float)out; //error

Dithering

	Author or source: Paul Kellett

	Created: 2002-02-11 17:41:21

	Linked files: nsdither.txt.

notes

(see linked file)

Double to Int

	Author or source: many people, implementation by Andy M00cho

	Type: pointer cast (round to zero, or ‘trunctate’)

	Created: 2002-01-17 03:04:41

notes

-Platform independant, literally. You have IEEE FP numbers, this will work, as long as
your not expecting a signed integer back larger than 16bits :)
-Will only work correctly for FP numbers within the range of [-32768.0,32767.0]
-The FPU must be in Double-Precision mode

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	typedef double lreal;
typedef float real;
typedef unsigned long uint32;
typedef long int32;

 //2^36 * 1.5, (52-_shiftamt=36) uses limited precision to floor
 //16.16 fixed point representation

const lreal _double2fixmagic = 68719476736.0*1.5;
const int32 _shiftamt = 16;

#if BigEndian_
 #define iexp_ 0
 #define iman_ 1
#else
 #define iexp_ 1
 #define iman_ 0
#endif //BigEndian_

// Real2Int
inline int32 Real2Int(lreal val)
{
 val= val + _double2fixmagic;
 return ((int32*)&val)[iman_] >> _shiftamt;
}

// Real2Int
inline int32 Real2Int(real val)
{
 return Real2Int ((lreal)val);
}

For the x86 assembler freaks here's the assembler equivalent:

__double2fixmagic dd 000000000h,042380000h

fld AFloatingPoint Number
fadd QWORD PTR __double2fixmagic
fstp TEMP
movsx eax,TEMP+2

Comments

	Date: 2007-01-28 20:13:49

	By: ude.odu@grebnesie.nitram

www.stereopsis.com/FPU.html credits one Sree Kotay for this code.

	Date: 2007-07-11 06:17:12

	By: kd.sgnik3@sumsar

On PC this may be faster/easier:

int ftoi(float x)
{
 int res;
 __asm
 {
 fld x
 fistp res
 }
 return res;
}

int dtoi(double x)
{
 return ftoi((float)x);
}

Envelope Follower

	Author or source: ers

	Created: 2003-03-12 04:08:16

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

	#define V_ENVELOPE_FOLLOWER_NUM_POINTS 2000
class vEnvelopeFollower :
{
 public:
 vEnvelopeFollower();
 virtual ~vEnvelopeFollower();
 inline void Calculate(float *b)
 {
 envelopeVal -= *buff;
 if (*b < 0)
 envelopeVal += *buff = -*b;
 else
 envelopeVal += *buff = *b;
 if (buff++ == bufferEnd)
 buff = buffer;
 }
 void SetBufferSize(float value);
 void GetControlValue(){return envelopeVal / (float)bufferSize;}

 private:
 float buffer[V_ENVELOPE_FOLLOWER_NUM_POINTS];
 float *bufferEnd, *buff, envelopeVal;
 int bufferSize;
 float val;
};

vEnvelopeFollower::vEnvelopeFollower()
{
 bufferEnd = buffer + V_ENVELOPE_FOLLOWER_NUM_POINTS-1;
 buff = buffer;
 val = 0;
 float *b = buffer;
 do
 {
 *b++ = 0;
 }while (b <= bufferEnd);
 bufferSize = V_ENVELOPE_FOLLOWER_NUM_POINTS;
 envelopeVal= 0;
}

vEnvelopeFollower::~vEnvelopeFollower()
{

}

void vEnvelopeFollower::SetBufferSize(float value)
{

 bufferEnd = buffer + (bufferSize = 100 + (int)(value * ((float)V_ENVELOPE_FOLLOWER_NUM_POINTS-102)));
 buff = buffer;
 float val = envelopeVal / bufferSize;
 do
 {
 *buff++ = val;
 }while (buff <= bufferEnd);
 buff = buffer;
}

Comments

	Date: 2007-01-17 13:46:04

	By: gro.akeeb@evets

Nice contribution, but I have a couple of questions...

Looks like there is a typo on GetControlValue... should return a float. Also, I am not clear on the reason for it taking a pointer to a float.

Is there any noticeable speed improvement with the "if (*b < 0)" code, as opposed to using fabs? I would hope that a decent compiler library would inline this (but haven't cracked open the disassembler to find out).

Exponential curve for

	Author or source: moc.liamg@321tiloen

	Type: Exponential curve

	Created: 2008-10-29 17:29:03

notes

When you design a frequency control for your filters you may need an exponential curve to
give the lower frequencies more resolution.

F=20-20000hz
x=0-100%

Case (control middle point):
x=50%
F=1135hz

Ploted diagram with 5 points:
http://img151.imageshack.us/img151/9938/expplotur3.jpg

code

	1
2

	//tweak - 14.15005 to change middle point and F(max)
F = 19+floor(pow(4,x/14.15005))+x*20;

Comments

	Date: 2008-10-30 13:47:16

	By: moc.liamg@321tiloen

same function with the more friendly exp(x)

y = 19+floor(exp(x/10.2071))+x*20;

middle point (x=50) is still at 1135hz

	Date: 2008-10-31 01:14:13

	By: moc.liamg@321tiloen

Here is another function:
This one is much more expensive but should sound more linear.

//t - offset
//x - 0-100%
//y - 20-20000hz

t = 64.925;
y = floor(exp(x*log(1.059))*t - t/1.45);

Comparison between the two:
[IMG]http://img528.imageshack.us/img528/641/plot1nu1.jpg[/IMG]

	Date: 2008-11-01 14:58:20

	By: moc.liamg@321tiloen

Yet another one! :)
This is one should be the most linear one out of the 3. The 50% appears to be exactly the same as Voxengo span midpoint.

//x - 0-100%
//y - 20-20k

y = floor(exp((16+x*1.20103)*log(1.059))*8.17742);

//x=0, y=20
//x=50, y=639
//x=100, y=20000

Exponential parameter mapping

	Author or source: Russell Borogove

	Created: 2002-03-17 15:42:33

notes

Use this if you want to do an exponential map of a parameter (mParam) to a range (mMin -
mMax).
Output is in mData...

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	float logmax = log10f(mMax);
float logmin = log10f(mMin);
float logdata = (mParam * (logmax-logmin)) + logmin;

mData = powf(10.0f, logdata);
if (mData < mMin)
{
 mData = mMin;
}
if (mData > mMax)
{
 mData = mMax;
}

Comments

	Date: 2002-03-26 00:28:53

	By: moc.nsm@seivadrer

No point in using heavy functions when lighter-weight functions work just as well. Use ln instead of log10f, and exp instead of pow(10,x). Log-linear is the same, no matter which base you're using, and base e is way more efficient than base 10.

	Date: 2002-12-06 01:31:55

	By: moc.noicratse@ajelak

Thanks for the tip. A set of VST param wrapper classes which offers linear float, exponential float, integer selection, and text selection controls, using this technique for the exponential response, can be found in the VST source code archive -- finally.

	Date: 2003-08-21 16:01:01

	By: moc.oohay@noi_tca

Just made my day!
pretty useful :) cheers Aktion

	Date: 2006-09-08 18:27:33

	By: agillesp@gmail

You can trade an (expensive) ln for a (cheaper) divide here because of the logarithmic identity:

ln(x) - ln(y) == ln(x/y)

Fast Float Random Numbers

	Author or source: moc.liamg@seir.kinimod

	Created: 2009-10-29 13:39:29

notes

a small and fast implementation for random float numbers in the range [-1,1], usable as
white noise oscillator.

compared to the naive usage of the rand() function it gives a speedup factor of 9-10.

compared to a direct implementation of the rand() function (visual studio implementation)
it still gives a speedup by a factor of 2-3.

apart from beeing faster it also provides more precision for the resulting floats since
its base values use full 32bit precision.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	// set the initial seed to whatever you like
static int RandSeed = 1;

// using rand() (16bit precision)
// takes about 110 seconds for 2 billion calls
float RandFloat1()
{
 return ((float)rand()/RAND_MAX) * 2.0f - 1.0f;
}

// direct implementation of rand() (16 bit precision)
// takes about 32 seconds for 2 billion calls
float RandFloat2()
{
 return ((float)(((RandSeed = RandSeed * 214013L + 2531011L) >> 16) & 0x7fff)/RAND_MAX) * 2.0f - 1.0f;
}

// fast rand float, using full 32bit precision
// takes about 12 seconds for 2 billion calls
float Fast_RandFloat()
{
 RandSeed *= 16807;
 return (float)RandSeed * 4.6566129e-010f;
}

Comments

	Date: 2009-11-20 23:40:37

	By: judahmenter@gee mail.com

There is no doubt that implementation 3 is fast, but the problem I had with it is that there's no obvious way to limit the amplitude of the generated signal.

So instead I tried implementation 2 and ran into a different problem. The code is written such that it assumes that RAND_MAX is equal to 0x7FFF, which was not true on my system (it was 0x7FFFFFFF). Fortunately, this was easy to fix. I simply removed the >> 16 and worked fine for me. My final implementation was:

return (float)(RandSeed = RandSeed * 214013L + 2531011L) / 0x7FFFFFFF * 2.0f * amp - amp;

where "amp" is the desired amplitude.

	Date: 2009-12-29 22:53:23

	By: earlevel [] earlevel [] com

It should be noted in the code that for method #3, you must initialize the seed to non-zero before using it.

	Date: 2010-01-24 16:36:03

	By: moc.boohay@bob

I don't understand Judahmenter's comment about 3 not limiting the amplitude. As it stands it returns a value -1 to 1, so just multiply by your 'amp' value.
This turns into a handy 0-1 random number if you take off the sign bit:
(float)(RandSeed & 0x7FFFFFFF) * 4.6566129e-010f;

Fast abs/neg/sign for 32bit floats

	Author or source: ed.bew@raebybot

	Type: floating point functions

	Created: 2002-12-18 20:27:04

notes

Haven't seen this elsewhere, probably because it is too obvious? Anyway, these functions
are intended for 32-bit floating point numbers only and should work a bit faster than the
regular ones.

fastabs() gives you the absolute value of a float
fastneg() gives you the negative number (faster than multiplying with -1)
fastsgn() gives back +1 for 0 or positive numbers, -1 for negative numbers

Comments are welcome (tobybear[AT]web[DOT]de)

Cheers

Toby (www.tobybear.de)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	// C/C++ code:
float fastabs(float f)
{int i=((*(int*)&f)&0x7fffffff);return (*(float*)&i);}

float fastneg(float f)
{int i=((*(int*)&f)^0x80000000);return (*(float*)&i);}

int fastsgn(float f)
{return 1+(((*(int*)&f)>>31)<<1);}

//Delphi/Pascal code:
function fastabs(f:single):single;
begin i:=longint((@f)^) and $7FFFFFFF;result:=single((@i)^) end;

function fastneg(f:single):single;
begin i:=longint((@f)^) xor $80000000;result:=single((@i)^) end;

function fastsgn(f:single):longint;
begin result:=1+((longint((@f)^) shr 31)shl 1) end;

Comments

	Date: 2003-01-05 05:01:59

	By: ed.bew@raebybot

Matthias (bekkah[AT]web[DOT]de) wrote me a mail with the following further improvements for the C++ parts of the code:

// C++ code:
inline float fastabs(const float f)
{int i=((*(int*)&f)&0x7fffffff);return (*(float*)&i);}

inline float fastneg(const float f)
{int i=((*(int*)&f)^0x80000000);return (*(float*)&i);}

inline int fastsgn(const float f)
{return 1+(((*(int*)&f)>>31)<<1);}

Thanks!

	Date: 2003-01-11 15:53:56

	By: ur.liam@redocip

Too bad these 'tricks' need two additional FWAITs to work in a raw FPU code. Maybe standard fabs and fneg are better? Although, that fastsgn() could be useful since there's no FPU equivalent for it.

Cheers,
Aleksey.

	Date: 2003-01-11 15:55:35

	By: ur.liam@redocip

I meant 'fchs' in place of 'fneg'.

	Date: 2003-05-05 20:49:34

	By: ten.llavnnarb@divad

I don't know if this is any faster, but atleast you can avoid some typecasting.

function fastabs(f: Single): Single; var i: Integer absolute f;
begin i := i and $7fffffff; Result := f; end;

	Date: 2003-07-29 04:55:55

	By: moc.oidua-m@sirhc

Note that a reasonable compiler should be able to perform these optimizations for you. I seem to recall that GCC in particular has the capability to replace calls to [f]abs() with instructions optimized for the platform.

	Date: 2005-05-25 20:22:59

	By: moc.noicratse@ajelak

On MS compilers for x86, just do:
#pragma intrinsic(fabs)

...and then use fabs() for doubles, fabsf() for floats. The compiler will generate the FABS instruction, which is generally 1 cycle on modern x86 FPUs. (Internally, the FPU just masks the bit.)

Fast binary log approximations

	Author or source: gro.lortnocdnim@gro.psdcisum

	Type: C code

	Created: 2002-04-04 17:00:05

notes

This code uses IEEE 32-bit floating point representation knowledge to quickly compute
approximations to the log2 of a value. Both functions return under-estimates of the actual
value, although the second flavour is less of an under-estimate than the first (and might
be sufficient for using in, say, a dBV/FS level meter).

Running the test program, here's the output:

0.1: -4 -3.400000
1: 0 0.000000
2: 1 1.000000
5: 2 2.250000
100: 6 6.562500

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	// Fast logarithm (2-based) approximation
// by Jon Watte

#include <assert.h>

int floorOfLn2(float f) {
 assert(f > 0.);
 assert(sizeof(f) == sizeof(int));
 assert(sizeof(f) == 4);
 return (((*(int *)&f)&0x7f800000)>>23)-0x7f;
}

float approxLn2(float f) {
 assert(f > 0.);
 assert(sizeof(f) == sizeof(int));
 assert(sizeof(f) == 4);
 int i = (*(int *)&f);
 return (((i&0x7f800000)>>23)-0x7f)+(i&0x007fffff)/(float)0x800000;
}

// Here's a test program:

#include <stdio.h>

// insert code from above here

int
main()
{
 printf("0.1: %d %f\n", floorOfLn2(0.1), approxLn2(0.1));
 printf("1: %d %f\n", floorOfLn2(1.), approxLn2(1.));
 printf("2: %d %f\n", floorOfLn2(2.), approxLn2(2.));
 printf("5: %d %f\n", floorOfLn2(5.), approxLn2(5.));
 printf("100: %d %f\n", floorOfLn2(100.), approxLn2(100.));
 return 0;
}

Comments

	Date: 2002-12-18 20:08:06

	By: ed.bew@raebybot

Here is some code to do this in Delphi/Pascal:

function approxLn2(f:single):single;
begin
 result:=(((longint((@f)^) and $7f800000) shr 23)-$7f)+(longint((@f)^) and $007fffff)/$800000;
end;

function floorOfLn2(f:single):longint;
begin
 result:=(((longint((@f)^) and $7f800000) shr 23)-$7f);
end;

Cheers,

Tobybear
www.tobybear.de

Fast cube root, square root, and reciprocal for x86/SSE CPUs.

	Author or source: moc.noicratse@ajelak

	Created: 2005-05-29 18:36:40

notes

All of these methods use SSE instructions or bit twiddling tricks to get a rough
approximation to cube root, square root, or reciprocal, which is then refined with one or
more Newton-Raphson approximation steps.

Each is named to indicate its approximate level of accuracy and a comment describes its
performance relative to the conventional versions.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

	// These functions approximate reciprocal, square root, and
// cube root to varying degrees of precision substantially
// faster than the straightforward methods 1/x, sqrtf(x),
// and powf(x, 1.0f/3.0f). All require SSE-enabled CPU & OS.
// Unlike the powf() solution, the cube roots also correctly
// handle negative inputs.

#define REALLY_INLINE __forceinline

// ~34 clocks on Pentium M vs. ~360 for powf
REALLY_INLINE float cuberoot_sse_8bits(float x)
{
 float z;
 static const float three = 3.0f;
 _asm
 {
 mov eax, x // x as bits
 movss xmm2, x // x2: x
 movss xmm1, three // x1: 3
 // Magic floating point cube root done with integer math.
 // The exponent is divided by three in such a way that
 // remainder bits get shoved into the top of the normalized
 // mantissa.
 mov ecx, eax // copy of x
 and eax, 0x7FFFFFFF // exponent & mantissa of x in biased-127
 sub eax, 0x3F800000 // exponent & mantissa of x in 2's comp
 sar eax, 10 //
 imul eax, 341 // 341/1024 ~= .333
 add eax, 0x3F800000 // back to biased-127
 and eax, 0x7FFFFFFF // remask
 and ecx, 0x80000000 // original sign and mantissa
 or eax, ecx // masked new exponent, old sign and mantissa
 mov z, eax //

 // use SSE to refine the first approximation
 movss xmm0, z ;// x0: z
 movss xmm3, xmm0 ;// x3: z
 mulss xmm3, xmm0 ;// x3: z*z
 movss xmm4, xmm3 ;// x4: z*z
 mulss xmm3, xmm1 ;// x3: 3*z*z
 rcpss xmm3, xmm3 ;// x3: ~ 1/(3*z*z)
 mulss xmm4, xmm0 ;// x4: z*z*z
 subss xmm4, xmm2 ;// x4: z*z*z-x
 mulss xmm4, xmm3 ;// x4: (z*z*z-x) / (3*z*z)
 subss xmm0, xmm4 ;// x0: z' accurate to within about 0.3%
 movss z, xmm0
 }

 return z;
}

// ~60 clocks on Pentium M vs. ~360 for powf
REALLY_INLINE float cuberoot_sse_16bits(float x)
{
 float z;
 static const float three = 3.0f;
 _asm
 {
 mov eax, x // x as bits
 movss xmm2, x // x2: x
 movss xmm1, three // x1: 3
 // Magic floating point cube root done with integer math.
 // The exponent is divided by three in such a way that
 // remainder bits get shoved into the top of the normalized
 // mantissa.
 mov ecx, eax // copy of x
 and eax, 0x7FFFFFFF // exponent & mantissa of x in biased-127
 sub eax, 0x3F800000 // exponent & mantissa of x in 2's comp
 sar eax, 10 //
 imul eax, 341 // 341/1024 ~= .333
 add eax, 0x3F800000 // back to biased-127
 and eax, 0x7FFFFFFF // remask
 and ecx, 0x80000000 // original sign and mantissa
 or eax, ecx // masked new exponent, old sign and mantissa
 mov z, eax //

 // use SSE to refine the first approximation
 movss xmm0, z ;// x0: z
 movss xmm3, xmm0 ;// x3: z
 mulss xmm3, xmm0 ;// x3: z*z
 movss xmm4, xmm3 ;// x4: z*z
 mulss xmm3, xmm1 ;// x3: 3*z*z
 rcpss xmm3, xmm3 ;// x3: ~ 1/(3*z*z)
 mulss xmm4, xmm0 ;// x4: z*z*z
 subss xmm4, xmm2 ;// x4: z*z*z-x
 mulss xmm4, xmm3 ;// x4: (z*z*z-x) / (3*z*z)
 subss xmm0, xmm4 ;// x0: z' accurate to within about 0.3%

 movss xmm3, xmm0 ;// x3: z
 mulss xmm3, xmm0 ;// x3: z*z
 movss xmm4, xmm3 ;// x4: z*z
 mulss xmm3, xmm1 ;// x3: 3*z*z
 rcpss xmm3, xmm3 ;// x3: ~ 1/(3*z*z)
 mulss xmm4, xmm0 ;// x4: z*z*z
 subss xmm4, xmm2 ;// x4: z*z*z-x
 mulss xmm4, xmm3 ;// x4: (z*z*z-x) / (3*z*z)
 subss xmm0, xmm4 ;// x0: z'' accurate to within about 0.001%

 movss z, xmm0
 }

 return z;
}

// ~77 clocks on Pentium M vs. ~360 for powf
REALLY_INLINE float cuberoot_sse_22bits(float x)
{
 float z;
 static const float three = 3.0f;
 _asm
 {
 mov eax, x // x as bits
 movss xmm2, x // x2: x
 movss xmm1, three // x1: 3
 // Magic floating point cube root done with integer math.
 // The exponent is divided by three in such a way that
 // remainder bits get shoved into the top of the normalized
 // mantissa.
 mov ecx, eax // copy of x
 and eax, 0x7FFFFFFF // exponent & mantissa of x in biased-127
 sub eax, 0x3F800000 // exponent & mantissa of x in 2's comp
 sar eax, 10 //
 imul eax, 341 // 341/1024 ~= .333
 add eax, 0x3F800000 // back to biased-127
 and eax, 0x7FFFFFFF // remask
 and ecx, 0x80000000 // original sign and mantissa
 or eax, ecx // masked new exponent, old sign and mantissa
 mov z, eax //

 // use SSE to refine the first approximation
 movss xmm0, z // x0: z
 movss xmm3, xmm0 // x3: z
 mulss xmm3, xmm0 // x3: z*z
 movss xmm4, xmm3 // x4: z*z
 mulss xmm3, xmm1 // x3: 3*z*z
 rcpss xmm3, xmm3 // x3: ~ 1/(3*z*z)
 mulss xmm4, xmm0 // x4: z*z*z
 subss xmm4, xmm2 // x4: z*z*z-x
 mulss xmm4, xmm3 // x4: (z*z*z-x) / (3*z*z)
 subss xmm0, xmm4 // x0: z' accurate to within about 0.3%

 movss xmm3, xmm0 // x3: z
 mulss xmm3, xmm0 // x3: z*z
 movss xmm4, xmm3 // x4: z*z
 mulss xmm3, xmm1 // x3: 3*z*z
 rcpss xmm3, xmm3 // x3: ~ 1/(3*z*z)
 mulss xmm4, xmm0 // x4: z*z*z
 subss xmm4, xmm2 // x4: z*z*z-x
 mulss xmm4, xmm3 // x4: (z*z*z-x) / (3*z*z)
 subss xmm0, xmm4 // x0: z'' accurate to within about 0.001%

 movss xmm3, xmm0 // x3: z
 mulss xmm3, xmm0 // x3: z*z
 movss xmm4, xmm3 // x4: z*z
 mulss xmm3, xmm1 // x3: 3*z*z
 rcpss xmm3, xmm3 // x3: ~ 1/(3*z*z)
 mulss xmm4, xmm0 // x4: z*z*z
 subss xmm4, xmm2 // x4: z*z*z-x
 mulss xmm4, xmm3 // x4: (z*z*z-x) / (3*z*z)
 subss xmm0, xmm4 // x0: z''' accurate to within about 0.000012%

 movss z, xmm0
 }

 return z;
}

// ~6 clocks on Pentium M vs. ~24 for single precision sqrtf
REALLY_INLINE float squareroot_sse_11bits(float x)
{
 float z;
 _asm
 {
 rsqrtss xmm0, x
 rcpss xmm0, xmm0
 movss z, xmm0 // z ~= sqrt(x) to 0.038%
 }
 return z;
}

// ~19 clocks on Pentium M vs. ~24 for single precision sqrtf
REALLY_INLINE float squareroot_sse_22bits(float x)
{
 static float half = 0.5f;
 float z;
 _asm
 {
 movss xmm1, x // x1: x
 rsqrtss xmm2, xmm1 // x2: ~1/sqrt(x) = 1/z
 rcpss xmm0, xmm2 // x0: z == ~sqrt(x) to 0.05%

 movss xmm4, xmm0 // x4: z
 movss xmm3, half
 mulss xmm4, xmm4 // x4: z*z
 mulss xmm2, xmm3 // x2: 1 / 2z
 subss xmm4, xmm1 // x4: z*z-x
 mulss xmm4, xmm2 // x4: (z*z-x)/2z
 subss xmm0, xmm4 // x0: z' to 0.000015%

 movss z, xmm0
 }
 return z;
}

// ~12 clocks on Pentium M vs. ~16 for single precision divide
REALLY_INLINE float reciprocal_sse_22bits(float x)
{
 float z;
 _asm
 {
 rcpss xmm0, x // x0: z ~= 1/x
 movss xmm2, x // x2: x
 movss xmm1, xmm0 // x1: z ~= 1/x
 addss xmm0, xmm0 // x0: 2z
 mulss xmm1, xmm1 // x1: z^2
 mulss xmm1, xmm2 // x1: xz^2
 subss xmm0, xmm1 // x0: z' ~= 1/x to 0.000012%

 movss z, xmm0
 }
 return z;
}

Fast exp() approximations

	Author or source: uh.etle.fni@yfoocs

	Type: Taylor series approximation

	Created: 2006-05-26 04:54:44

notes

I needed a fast exp() approximation in the -3.14..3.14 range, so I made some
approximations based on the tanh() code posted in the archive by Fuzzpilz. Should be
pretty straightforward, but someone may find this useful.

The increasing numbers in the name of the function means increasing precision. Maximum
error in the -1..1 range:
fastexp3: 0.05 (1.8%)
fastexp4: 0.01 (0.36%)
fastexp5: 0.0016152 (0.59%)
fastexp6: 0.0002263 (0.0083%)
fastexp7: 0.0000279 (0.001%)
fastexp8: 0.0000031 (0.00011%)
fastexp9: 0.0000003 (0.000011%)

Maximum error in the -3.14..3.14 range:
fastexp3: 8.8742 (38.4%)
fastexp4: 4.8237 (20.8%)
fastexp5: 2.28 (9.8%)
fastexp6: 0.9488 (4.1%)
fastexp7: 0.3516 (1.5%)
fastexp8: 0.1172 (0.5%)
fastexp9: 0.0355 (0.15%)

These were done using the Taylor series, for example I got fastexp4 by using:
exp(x) = 1 + x + x^2/2 + x^3/6 + x^4/24 + ...
= (24 + 24x + x^2*12 + x^3*4 + x^4) / 24
(using Horner-scheme:)
= (24 + x * (24 + x * (12 + x * (4 + x)))) * 0.041666666f

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	inline float fastexp3(float x) {
 return (6+x*(6+x*(3+x)))*0.16666666f;
}

inline float fastexp4(float x) {
 return (24+x*(24+x*(12+x*(4+x))))*0.041666666f;
}

inline float fastexp5(float x) {
 return (120+x*(120+x*(60+x*(20+x*(5+x)))))*0.0083333333f;
}

inline float fastexp6(float x) {
 return 720+x*(720+x*(360+x*(120+x*(30+x*(6+x))))))*0.0013888888f;
}

inline float fastexp7(float x) {
 return (5040+x*(5040+x*(2520+x*(840+x*(210+x*(42+x*(7+x)))))))*0.00019841269f;
}

inline float fastexp8(float x) {
 return (40320+x*(40320+x*(20160+x*(6720+x*(1680+x*(336+x*(56+x*(8+x))))))))*2.4801587301e-5;
}

inline float fastexp9(float x) {
 return (362880+x*(362880+x*(181440+x*(60480+x*(15120+x*(3024+x*(504+x*(72+x*(9+x)))))))))*2.75573192e-6;
}

Comments

	Date: 2006-07-03 00:40:15

	By: uh.etle.fni@yfoocs

These series converge fast only near zero. But there is an identity:

 exp(x) = exp(a) * exp(x-a)

So, if you want a relatively fast polynomial approximation for exp(x) for 0 to ~7.5, you can use:

// max error in the 0 .. 7.5 range: ~0.45%
inline float fastexp(float const &x)
{
 if (x<2.5)
 return 2.7182818f * fastexp5(x-1.f);
 else if (x<5)
 return 33.115452f * fastexp5(x-3.5f);
 else
 return 403.42879f * fastexp5(x-6.f);
}

where 2.7182.. = exp(1), 33.1154.. = exp(3.5) and 403.428.. = exp(6). I chose these values because fastexp5 has a maximum error of 0.45% between -1 - 1.5 (using fastexp6, the maximum error is 0.09%).

Using the identity

 pow(a,x) = exp(x * log(a))

you can use any base, for example to get 2^x:

// max error in the 0-10.58 range: ~0.45%
inline float fastpow2(float const &x)
{
 float const log_two = 0.6931472f;
 return fastexp(x * log_two);
}

These functions are about 3x faster than exp().

-- Peter Schoffhauzer

Fast exp2 approximation

	Author or source: Laurent de Soras (moc.ecrofmho@tnerual)

	Created: 2002-07-29 18:42:23

notes

Partial approximation of exp2 in fixed-point arithmetic. It is exactly :
[0 ; 1[-> [0.5 ; 1[
f : x |-> 2^(x-1)
To get the full exp2 function, you have to separate the integer and fractionnal part of
the number. The integer part may be processed by bitshifting. Process the fractionnal part
with the function, and multiply the two results.
Maximum error is only 0.3 % which is pretty good for two mul ! You get also the continuity
of the first derivate.

-- Laurent

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	// val is a 16-bit fixed-point value in 0x0 - 0xFFFF ([0 ; 1[)
// Returns a 32-bit fixed-point value in 0x80000000 - 0xFFFFFFFF ([0.5 ; 1[)
unsigned int fast_partial_exp2 (int val)
{
 unsigned int result;

 __asm
 {
 mov eax, val
 shl eax, 15 ; eax = input [31/31 bits]
 or eax, 080000000h ; eax = input + 1 [32/31 bits]
 mul eax
 mov eax, edx ; eax = (input + 1) ^ 2 [32/30 bits]
 mov edx, 2863311531 ; 2/3 [32/32 bits], rounded to +oo
 mul edx ; eax = 2/3 (input + 1) ^ 2 [32/30 bits]
 add edx, 1431655766 ; + 4/3 [32/30 bits] + 1
 mov result, edx
 }

 return (result);
}

Fast log2

	Author or source: Laurent de Soras

	Created: 2002-02-10 12:31:20

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	inline float fast_log2 (float val)
{
 assert (val > 0);

 int * const exp_ptr = reinterpret_cast <int *> (&val);
 int x = *exp_ptr;
 const int log_2 = ((x >> 23) & 255) - 128;
 x &= ~(255 << 23);
 x += 127 << 23;
 *exp_ptr = x;

 return (val + log_2);
}

Comments

	Date: 2002-12-18 20:13:06

	By: ed.bew@raebybot

And here is some native Delphi/Pascal code that
does the same thing:

function fast_log2(val:single):single;
var log2,x:longint;
begin
 x:=longint((@val)^);
 log2:=((x shr 23) and 255)-128;
 x:=x and (not(255 shl 23));
 x:=x+127 shl 23;
 result:=single((@x)^)+log2;
end;

Cheers

Toby

www.tobybear.de

	Date: 2003-02-07 23:54:32

	By: ed.sulydroc@yrneh

instead of using this pointer casting expressions one can also use a enum like this:

enum FloatInt
{
float f;

	Date: 2003-02-07 23:55:27

	By: ed.sulydroc@yrneh

instead of using this pointer casting expressions one can also use a enum like this:

enum FloatInt
{
float f;
int l;
} p;

and then access the data with:

p.f = x;
p.l >>= 23;

Greetings, Henry

	Date: 2003-02-07 23:56:11

	By: ed.sulydroc@yrneh

Sorry :

didnt mean enum, ment UNION !!!

	Date: 2005-10-18 10:03:47

	By: Laurent de Soras

More precision can be obtained by adding the following line just before the return() :

val = map_lin_2_exp (val, 1.0f / 2);

Below is the function (everything is constant, so most operations should be done at compile time) :

inline float map_lin_2_exp (float val, float k)
{
 const float a = (k - 1) / (k + 1);
 const float b = (4 - 2*k) / (k + 1); // 1 - 3*a
 const float c = 2*a;
 val = (a * val + b) * val + c;

 return (val);
}

You can do the mapping you want for the range [1;2] -> [1;2] to approximate the function log(x)/log(2).

	Date: 2005-10-18 10:05:48

	By: Laurent de Soras

Sorry I meant log(x)/log(2) + 1

Fast power and root estimates for 32bit floats

	Author or source: ed.bew@raebybot

	Type: floating point functions

	Created: 2002-12-18 21:07:27

notes

Original code by Stefan Stenzel (also in this archive, see "pow(x,4) approximation") -
extended for more flexibility.

fastpow(f,n) gives a rather *rough* estimate of a float number f to the power of an
integer number n (y=f^n). It is fast but result can be quite a bit off, since we directly
mess with the floating point exponent.-> use it only for getting rough estimates of the
values and where precision is not that important.

fastroot(f,n) gives the n-th root of f. Same thing concerning precision applies here.

Cheers

Toby (www.tobybear.de)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	//C/C++ source code:
float fastpower(float f,int n)
{
 long *lp,l;
 lp=(long*)(&f);
 l=*lp;l-=0x3F800000l;l<<=(n-1);l+=0x3F800000l;
 *lp=l;
 return f;
}

float fastroot(float f,int n)
{
 long *lp,l;
 lp=(long*)(&f);
 l=*lp;l-=0x3F800000l;l>>=(n-1);l+=0x3F800000l;
 *lp=l;
 return f;
}

//Delphi/Pascal source code:
function fastpower(i:single;n:integer):single;
var l:longint;
begin
 l:=longint((@i)^);
 l:=l-$3F800000;l:=l shl (n-1);l:=l+$3F800000;
 result:=single((@l)^);
end;

function fastroot(i:single;n:integer):single;
var l:longint;
begin
 l:=longint((@i)^);
 l:=l-$3F800000;l:=l shr (n-1);l:=l+$3F800000;
 result:=single((@l)^);
end;

Fast rounding functions in pascal

	Author or source: moc.liamtoh@abuob

	Type: round/ceil/floor/trunc

	Created: 2008-03-09 13:09:44

notes

Original documentation with cpp samples:
http://ldesoras.free.fr/prod.html#doc_rounding

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	Pascal translation of the functions (accurates ones) :

function ffloor(f:double):integer;
var
 i:integer;
 t : double;
begin
t := -0.5 ;
 asm
 fld f
 fadd st,st(0)
 fadd t
 fistp i
 sar i, 1
end;
result:= i
end;

function fceil(f:double):integer;
var
 i:integer;
 t : double;
begin
t := -0.5 ;
 asm
 fld f
 fadd st,st(0)
 fsubr t
 fistp i
 sar i, 1
end;
result:= -i
end;

function ftrunc(f:double):integer;
var
 i:integer;
 t : double;
begin
t := -0.5 ;
 asm
 fld f
 fadd st,st(0)
 fabs
 fadd t
 fistp i
 sar i, 1
end;
if f<0 then i := -i;
result:= i
end;

function fround(f:double):integer;
var
 i:integer;
 t : double;
begin
t := 0.5 ;
 asm
 fld f
 fadd st,st(0)
 fadd t
 fistp i
 sar i, 1
end;
result:= i
end;

Comments

	Date: 2008-04-23 11:46:58

	By: eb.mapstenykson@didid

the fround doesn't make much sense in Pascal, as in Pascal (well, Delphi & I'm pretty sure FreePascal too), the default rounding is already a fast rounding. The default being FPU rounding to nearest mode, the compiler doesn't change it back & forth. & since it's inlined (well, compiler magic), it's very fast.

Fast sign for 32 bit floats

	Author or source: Peter Schoffhauzer

	Created: 2007-05-14 10:15:43

notes

Fast functions which give the sign of a 32 bit floating point number by checking the sign
bit. There are two versions, one which gives the value as a float, and the other gives an
int.

The _nozero versions are faster, but they give incorrect 1 or -1 for zero (depending on
the sign bit set in the number). The int version should be faster than the Tobybear one in
the archive, since this one doesn't have an addition, just bit operations.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	/*--
 fast sign, returns float
--*/

// returns 1.0f for positive floats, -1.0f for negative floats
// for zero it does not work (may gives 1.0f or -1.0f), but it's faster
inline float fast_sign_nozero(float f) {
 float r = 1.0f;
 (int&)r |= ((int&)f & 0x80000000); // mask sign bit in f, set it in r if necessary
 return r;
}

// returns 1.0f for positive floats, -1.0f for negative floats, 0.0f for zero
inline float fast_sign(float f) {
 if (((int&)f & 0x7FFFFFFF)==0) return 0.f; // test exponent & mantissa bits: is input zero?
 else {
 float r = 1.0f;
 (int&)r |= ((int&)f & 0x80000000); // mask sign bit in f, set it in r if necessary
 return r;
 }
}

/*--
 fast sign, returns int
--*/

// returns 1 for positive floats, -1 for negative floats
// for 0.0f input it does not work (may give 1 or -1), but it's faster
inline int fast_sign_int_nozero(float f) {
 return (signed((int&)f & 0x80000000) >> 31) | 1;
}

// returns 1 for positive floats, -1 for negative floats, 0 for 0.0f
inline int fast_sign_int(float f) {
 if (((int&)f & 0x7FFFFFFF)==0) return 0; // test exponent & mantissa bits: is input zero?
 return (signed((int&)f & 0x80000000) >> 31) | 1;
}

Comments

	Date: 2007-05-15 16:49:02

	By: uh.etle.fni@yfoocs

Now consider when you want to multiply a number by the sign of another:

 if (a>0.f) b = b;
 else b = -b;

This involves 1) a comparison, 2) a branch, 3) an inversion (multiply or bit flip) in one branch. Another method for calculating the same:

 b *= fast_sign_nozero_(a);

This involves 1) a bitwise and, 2) a bitwise or 3) and a multiply. Using only bit operations, the branch and/or multiply can be totally eliminated:

// equivalent to dest *= sgn(source)
inline void mul_sign(float &dest, float &source) {
 (int&)dest &= 0x7FFFFFFF; // clear sign bit
 (int&)dest |= ((int&)dest ^ (int&)source) & 0x80000000f; // set sign bit if necessary
}

This function has only three bitwise operations, which should be very fast. Usage:

 mul_sign(b,a); // b = b*sign(a)

The speed increase with all these functions greatly depends on the predictability of the branches. If the branch is highly predictable (a lot of positive numbers, then a lot of negative numbers, without mixing them), then an if/else solution is pretty fast. If the branch is unpredictable (random numbers, or audio similar to white noise) then bit operations should perform significantly better on today's most CPUs with multi-level pipelines.

-- Peter Schoffhauzer

	Date: 2007-07-01 19:14:04

	By: uh.etle.fni@yfoocs

Sorry, there is a bug in the above code. Correctly:

// equivalent to dest *= sgn(source)
inline void mul_sign_nozero(float &dest, float const &source) {
 int sign_mask = ((int&)dest ^ (int&)source) & 0x80000000; // XOR and mask
 (int&)dest &= 0x7FFFFFFF; // clear sign bit
 (int&)dest |= sign_mask; // set sign bit if necessary
}

Float to int

	Author or source: Ross Bencina

	Created: 2002-01-17 03:15:14

notes

intel only

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	int truncate(float flt)
{
 int i;
 static const double half = 0.5f;
 _asm
 {
 fld flt
 fsub half
 fistp i
 }
 return i
}

Comments

	Date: 2002-06-11 20:12:11

	By: moc.xinortceletrams@ahaj

Note: Round nearest doesn't work, because the Intel FPU uses Even-Odd rounding in order to conform to the IEEE floating-point standard: when the FPU is set to use the round-nearest rule, values whose fractional part is exactly 0.5
round toward the nearest *even* integer. Thus, 1.5 rounds to 2, 2.5 rounds to 2, 3.5 rounds to 4. This is quite disastrous for the FLOOR/CEIL
functions if you use the strategy you describe.

	Date: 2003-05-28 21:25:24

	By: moc.oohay@tuanogus

This version below seems to be more accurate on my Win32/P4. Doesn't deal with the Intel FPU issue. A faster solution than c-style casts though. But you're not always going to get the most accurate conversion. Like the previous comment; 2.5 will convert to 2, but 2.501 will convert to 3.

int truncate(float flt)
{
 int i;
 _asm
 {
 fld flt
 fistp i
 }
 return i
}

	Date: 2004-04-07 01:20:49

	By: moc.erehwon@amsuk

if you use msvc, just use the /QIfist compile-switch

Float to int (more intel asm)

	Author or source: Laurent de Soras (via flipcode)

	Created: 2004-06-14 14:51:47

notes

[Found this on flipcode, seemed worth posting here too, hopefully Laurent will approve :)
-- Ross]

Here is the code I often use. It is not a _ftol replacement, but it provides useful
functions. The current processor rounding mode should be "to nearest" ; it is the default
setting for most of the compilers.

The [fadd st, st (0) / sar i,1] trick fixes the "round to nearest even number" behaviour.
Thus, round_int (N+0.5) always returns N+1 and floor_int function is appropriate to
convert floating point numbers into fixed point numbers.

Laurent de Soras
Audio DSP engineer & software designer
Ohm Force - Digital audio software
http://www.ohmforce.com

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	inline int round_int (double x)
{
 int i;
 static const float round_to_nearest = 0.5f;
 __asm
 {
 fld x
 fadd st, st (0)
 fadd round_to_nearest
 fistp i
 sar i, 1
 }

 return (i);
}

inline int floor_int (double x)
{
 int i;
 static const float round_toward_m_i = -0.5f;
 __asm
 {
 fld x
 fadd st, st (0)
 fadd round_toward_m_i
 fistp i
 sar i, 1
 }

 return (i);
}

inline int ceil_int (double x)
{
 int i;
 static const float round_toward_p_i = -0.5f;
 __asm
 {
 fld x
 fadd st, st (0)
 fsubr round_toward_p_i
 fistp i
 sar i, 1
 }

 return (-i);
}

Comments

	Date: 2004-06-15 07:29:25

	By: daniel.schaack[-dot-]basementarts.de

cool trick, but using round to zero FPU mode is still the best methode (2 lines):

__asm
{
 fld x
 fistp y
}

	Date: 2004-06-18 01:28:41

	By: moc.krod@dje

If anyone is using NASM, here is how I implemented the first function, if anyone is interested. I did this after sitting down for a while with the intel manuals. I've not done any x86-FPU stuff before, so this may not be the *best* code. The other functions are easily implemented by modifying this one.

bits 32
global dsp_round

HALF dq 0.5

align 4
dsp_round:
 fld qword[HALF]
 fld qword[esp+4]

 fadd st0
 fadd st1

 fistp qword[eax]
 mov eax, [eax]
 sar eax, 1
 ret

	Date: 2004-06-18 13:48:09

	By: moc.krod@dje

Whoops. I've really gone and embarassed myself this time. The code I posted is actually broken -- I don't know what I was thinking. I'll post the fixed version a bit later today. My appologies.

	Date: 2004-08-10 10:29:44

	By: pj.krowtenctu@remmah

Will this method also work for other processor types like AMD and CELERON?

	Date: 2007-02-19 11:13:19

	By: uh.etle.fni@yfoocs

It works with AMD and Celeron too (and as I know, probably with all x87 FPUs)

Float to integer conversion

	Author or source: Peter Schoffhauzer

	Created: 2007-02-19 10:03:07

notes

The fld x/fistp i instructions can be used for fast conversion of floating point numbers
to integers. By default, the number is rounded to the nearest integer. However, sometimes
that's not what we need.

Bits 12 and 11 if the FPU control word determine the way the FPU rounds numbers. The four
rounding states are:

00 = round to nearest (this is the default)
01 = round down (towards -infinity)
10 = round up(towards +infinity)
11 = truncate up(towards zero)

The status word is loaded/stored using the fldcw/fstcw instructions. After setting the
rounding mode as desired, the float2int() function will use that rounding mode until the
control mode is reset. The ceil() and floor() functions set the rounding mode for every
instruction, which is very slow. Therefore, it is a lot faster to set the rounding mode
(down or up) before processing a block, and use float2int() instead.

References: SIMPLY FPU by Raymond Filiatreault
http://www.website.masmforum.com/tutorials/fptute/index.html

MSVC (and probably other compilers too) has functions defined in <float.h> for changing
the FPU control word: _control87/_controlfp. The equivalent instructions are:

_controlfp(_RC_CHOP, _MCW_RC); // set rounding mode to truncate
_controlfp(_RC_UP _MCW_RC); // set rounding mode to up (ceil)
_controlfp(_RC_DOWN, _MCW_RC); // set rounding mode to down (floor)
_controlfp(_RC_NEAR, _MCW_RC); // set rounding mode to near (default)

Note that the FPU rounding mode affects other calculations too, so the same code may give
different results.

Alternatively, single precision floating point numbers can be truncated or rounded to
integers by using SSE instructions cvtss2si, cvttss2si, cvtps2pi or cvttps2pi, where SSE
instructions are available (which means probably on all modern CPUs). These are not
discussed here in detail, but I provided the function truncateSSE which always truncates a
single precision floating point number to integer, regardless of the current rounding
mode.

(Also I think the SSE rounding mode can differ from the rounding mode set in the FPU
control word, but I haven't tested it so far.)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

	#ifndef __FPU_ROUNDING_H_
#define __FPU_ROUNDING_H_

static short control_word;
static short control_word2;

// round a float to int using the actual rounding mode
inline int float2int(float x) {
 int i;
 __asm {
 fld x
 fistp i
 }
 return i;
}

// set rounding mode to nearest
inline void set_round2near() {
 __asm {
 fstcw control_word // store fpu control word
 mov dx, word ptr [control_word]
 and dx,0xf9ff // round towards nearest (default)
 mov control_word2, dx
 fldcw control_word2 // load modfied control word
 }
}

// set rounding mode to round down
inline void set_round_down() {
 __asm {
 fstcw control_word // store fpu control word
 mov dx, word ptr [control_word]
 or dx,0x0400 // round towards -inf
 and dx,0xf7ff
 mov control_word2, dx
 fldcw control_word2 // load modfied control word
 }
}

// set rounding mode to round up
inline void set_round_up() {
 __asm {
 fstcw control_word // store fpu control word
 mov dx, word ptr [control_word]
 or dx,0x0800 // round towards +inf
 and dx,0xfbff
 mov control_word2, dx
 fldcw control_word2 // load modfied control word
 }
}

// set rounding mode to truncate
inline void set_truncate() {
 __asm {
 fstcw control_word // store fpu control word
 mov dx, word ptr [control_word]
 or dx,0x0c00 // rounding: truncate
 mov control_word2, dx
 fldcw control_word2 // load modfied control word
 }
}

// restore original rounding mode
inline void restore_cw() {
 __asm fldcw control_word
}

// truncate to integer using SSE
inline long truncateSSE(float x) {
 __asm cvttss2si eax,x
}

#endif

Comments

	Date: 2007-12-30 02:01:18

	By: moc.liamtoh@kcuncorj

I've seen a lot of talk about using the function lrintf() when converting from float to int, regarding bypassing some 'slow' opcodes in what standard compilers put in for something like:

int myint = (int) myfloat;

in otherwords the following code would be faster:
int myint = lrintf(myfloat);

this lrintf function is available on GNU C/C++

Float-to-int, coverting an array of floats

	Author or source: Stefan Stenzel

	Created: 2002-01-17 03:10:32

notes

intel only

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	void f2short(float *fptr,short *iptr,int n)
{
_asm {
 mov ebx,n
 mov esi,fptr
 mov edi,iptr
 lea ebx,[esi+ebx*4] ; ptr after last
 mov edx,0x80008000 ; damn endianess confuses...
 mov ecx,0x4b004b00 ; damn endianess confuses...
 mov eax,[ebx] ; get last value
 push eax
 mov eax,0x4b014B01
 mov [ebx],eax ; mark end
 mov ax,[esi+2]
 jmp startf2slp

; Pad with nops to make loop start at address divisible
; by 16 + 2, e.g. 0x01408062, don't ask why, but this
; gives best performance. Unfortumately "align 16" does
; not seem to work with my VC.
; below I noted the measured execution times for different
; nop-paddings on my Pentium Pro, 100 conversions.
; saturation: off pos neg

 nop ;355 546 563 <- seems to be best
; nop ;951 547 544
; nop ;444 646 643
; nop ;444 646 643
; nop ;944 951 950
; nop ;358 447 644
; nop ;358 447 643
; nop ;358 544 643
; nop ;543 447 643
; nop ;643 447 643
; nop ;1047 546 746
; nop ;545 954 1253
; nop ;545 547 661
; nop ;544 547 746
; nop ;444 947 1147
; nop ;444 548 545
in_range:
 mov eax,[esi]
 xor eax,edx
saturate:
 lea esi,[esi+4]
 mov [edi],ax
 mov ax,[esi+2]
 add edi,2
startf2slp:
 cmp ax,cx
 je in_range
 mov eax,edx
 js saturate ; saturate neg -> 0x8000
 dec eax ; saturate pos -> 0x7FFF
 cmp esi,ebx ; end reached ?
 jb saturate
 pop eax
 mov [ebx],eax ; restore end flag
 }
}

Comments

	Date: 2003-01-22 20:20:20

	By: moc.xinortceletrams@sungam

_asm {
mov ebx,n
mov esi,fptr
mov edi,iptr
lea ebx,[esi+ebx*4] ; ptr after last
mov edx,0x80008000 ; damn endianess confuses...
mov ecx,0x4b004b00 ; damn endianess confuses...
mov eax,[ebx] ; get last value

I think the last line here reads outside the buffer.

Gaussian dithering

	Author or source: Aleksey Vaneev (ur.liam@redocip)

	Type: Dithering

	Created: 2002-09-29 23:02:52

notes

It is a more sophisticated dithering than simple RND. It gives the most low noise floor
for the whole spectrum even without noise-shaping. You can use as big N as you can afford
(it will not hurt), but 4 or 5 is generally enough.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	Basically, next value is calculated this way (for RND going from -0.5 to 0.5):

dither = (RND+RND+...+RND) / N.
 \ /
 _________/
 N times

If your RND goes from 0 to 1, then this code is applicable:

dither = (RND+RND+...+RND - 0.5*N) / N.

Gaussian random numbers

	Author or source: ed.bew@raebybot

	Type: random number generation

	Created: 2002-12-16 19:01:01

notes

// Gaussian random numbers
// This algorithm (adapted from "Natur als fraktale Grafik" by
// Reinhard Scholl) implements a generation method for gaussian
// distributed random numbers with mean=0 and variance=1
// (standard gaussian distribution) mapped to the range of
// -1 to +1 with the maximum at 0.
// For only positive results you might abs() the return value.
// The q variable defines the precision, with q=15 the smallest
// distance between two numbers will be 1/(2^q div 3)=1/10922
// which usually gives good results.

// Note: the random() function used is the standard random
// function from Delphi/Pascal that produces *linear*
// distributed numbers from 0 to parameter-1, the equivalent
// C function is probably rand().

code

	1
2
3
4
5
6
7
8
9

	const q=15;
 c1=(1 shl q)-1;
 c2=(c1 div 3)+1;
 c3=1/c1;

function GRandom:single;
begin
 result:=(2*(random(c2)+random(c2)+random(c2))-3*(c2-1))*c3;
end;

Hermite Interpolator (x86 ASM)

	Author or source: moc.oiduacbr@kileib.trebor

	Type: Hermite interpolator in x86 assembly (for MS VC++)

	Created: 2004-04-07 09:38:32

notes

An "assemblified" variant of Laurent de Soras hermite interpolator. I tried to do
calculations as parallell as I could muster, but there is almost certainly room for
improvements. Right now, it works about 5.3 times (!) faster, not bad to start with...

Parameter explanation:
frac_pos: fractional value [0.0f - 1.0f] to interpolator
pntr: pointer to float array where:
 pntr[0] = previous sample (idx = -1)
 pntr[1] = current sample (idx = 0)
 pntr[2] = next sample (idx = +1)
 pntr[3] = after next sample (idx = +2)

The interpolation takes place between pntr[1] and pntr[2].

Regards,
/Robert Bielik
RBC Audio

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	const float c_half = 0.5f;

__declspec(naked) float __hermite(float frac_pos, const float* pntr)
{
 __asm
 {
 push ecx;
 mov ecx, dword ptr[esp + 12]; //
 add ecx, 0x04; // ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)
 fld dword ptr [ecx+4]; // x1
 fsub dword ptr [ecx-4]; // x1-xm1
 fld dword ptr [ecx]; // x0 x1-xm1
 fsub dword ptr [ecx+4]; // v x1-xm1
 fld dword ptr [ecx+8]; // x2 v x1-xm1
 fsub dword ptr [ecx]; // x2-x0 v x1-xm1
 fxch st(2); // x1-m1 v x2-x0
 fmul c_half; // c v x2-x0
 fxch st(2); // x2-x0 v c
 fmul c_half; // 0.5*(x2-x0) v c
 fxch st(2); // c v 0.5*(x2-x0)
 fst st(3); // c v 0.5*(x2-x0) c
 fadd st(0), st(1); // w v 0.5*(x2-x0) c
 fxch st(2); // 0.5*(x2-x0) v w c
 faddp st(1), st(0); // v+.5(x2-x0) w c
 fadd st(0), st(1); // a w c
 fadd st(1), st(0); // a b_neg c
 fmul dword ptr [esp+8]; // a*frac b_neg c
 fsubp st(1), st(0); // a*f-b c
 fmul dword ptr [esp+8]; // (a*f-b)*f c
 faddp st(1), st(0); // res-x0/f
 fmul dword ptr [esp+8]; // res-x0
 fadd dword ptr [ecx]; // res
 pop ecx;
 ret;
 }
}

Comments

	Date: 2003-11-27 04:53:16

	By: dmi@smartelectronix

This code produces a nasty buzzing sound. I think there might be a bug somwhere but I haven't found it yet.

	Date: 2003-11-29 16:41:41

	By: gro.lortnocdnim@psdcisum-sulph

I agree; the output, when plotted, looks like it has overlaid rectangular shapes on it.

	Date: 2003-12-02 21:18:57

	By: moc.oiduacbr@kileib.trebor

AHH! True! A bug has sneaked in! Change the row that says:
fsubp st(1), st(0); // a*f-b c
to:
fsubrp st(1), st(0); // a*f-b c

and it should be much better. Although I noticed that a good optimization by the compiler generates nearly as fast a code, but only nearly. This is still about 10% faster.

	Date: 2004-09-07 02:24:34

	By: moc.enecslatnemirepxe@renrewd

I have tested the four hermite interpolation algorithms posted to musicdsp.org plus the assemblified version of

Laurent de Soras' code by Robert Bielik and found that on a Pentium 4 with full optimization (targeting the

Pentium 4 and above, but not using code that won't work on older processors) with MS VC++ 7 that the second

function is the fastest.

Function Percent Total Time Return Value

hermite1: 18.90%, 375ms, 0.52500004f
hermite2: 16.53%, 328ms, 0.52500004f
hermite3: 17.34%, 344ms, 0.52500004f
hermite4: 19.66%, 390ms, 0.52500004f
hermite5: 27.57%, 547ms, 0.52500004f

- Daniel Werner
http://experimentalscene.com/

Hermite interpollation

	Author or source: various

	Created: 2002-04-09 16:55:35

notes

These are all different ways to do the same thing : hermite interpollation. Try'm all and
benchmark.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	// original
inline float hermite1(float x, float y0, float y1, float y2, float y3)
{
 // 4-point, 3rd-order Hermite (x-form)
 float c0 = y1;
 float c1 = 0.5f * (y2 - y0);
 float c2 = y0 - 2.5f * y1 + 2.f * y2 - 0.5f * y3;
 float c3 = 1.5f * (y1 - y2) + 0.5f * (y3 - y0);

 return ((c3 * x + c2) * x + c1) * x + c0;
}

// james mccartney
inline float hermite2(float x, float y0, float y1, float y2, float y3)
{
 // 4-point, 3rd-order Hermite (x-form)
 float c0 = y1;
 float c1 = 0.5f * (y2 - y0);
 float c3 = 1.5f * (y1 - y2) + 0.5f * (y3 - y0);
 float c2 = y0 - y1 + c1 - c3;

 return ((c3 * x + c2) * x + c1) * x + c0;
}

// james mccartney
inline float hermite3(float x, float y0, float y1, float y2, float y3)
{
 // 4-point, 3rd-order Hermite (x-form)
 float c0 = y1;
 float c1 = 0.5f * (y2 - y0);
 float y0my1 = y0 - y1;
 float c3 = (y1 - y2) + 0.5f * (y3 - y0my1 - y2);
 float c2 = y0my1 + c1 - c3;

 return ((c3 * x + c2) * x + c1) * x + c0;
}

// laurent de soras
inline float hermite4(float frac_pos, float xm1, float x0, float x1, float x2)
{
 const float c = (x1 - xm1) * 0.5f;
 const float v = x0 - x1;
 const float w = c + v;
 const float a = w + v + (x2 - x0) * 0.5f;
 const float b_neg = w + a;

 return ((((a * frac_pos) - b_neg) * frac_pos + c) * frac_pos + x0);
}

Comments

	Date: 2002-05-25 13:37:32

	By: theguylle

 great sources but what is Hermite ?
if you don't describe what is your code made for, you will made a great sources but I don't know why?

cheers Paul

	Date: 2002-08-15 00:48:25

	By: gro.psdcisum@marb

hermite is interpollation.
have a look around the archive, you'll see that the word 'hermite' is in more than one item ;-)

 -bram

	Date: 2003-07-29 10:46:40

	By: rb.moc.rapenas@fwodlanor

Please, would like to know of hermite code it exists in delphi.

thankful

Ronaldo
Cascavel/Paraná/Brasil

	Date: 2003-10-10 08:36:06

	By: moc.rotces-dabMAPSON@inirgam.m

Please,
add, at least, the meaning of each parameter (I mean x, y0, y1,y2, y3)....
m.

	Date: 2003-11-28 10:48:17

	By: musicdsp@[remove this]dsparsons.co.uk

Ronaldo, it doesn't take much to translate these to Delphi - for float, either use single or double to your preference!

Looking at the codes, it seems quite clear that the parameters follow a pattern of: Sample Position between middle two samples, then the sample before current, current sample, curernt sample +1, current sample +2.

HTH
DSP

	Date: 2004-03-28 20:51:59

	By: moc.liamtoh@sisehtnysorpitna

What are all these variables standing for? Not very clear :|

	Date: 2004-04-20 00:25:29

	By: George

parameters are allright.

xm1 ---> x[n-1]
x0 ---> x[n]
x1 ---> x[n+1]
x2 ---> x[n+2]

fractional position stands for a fraction between 0 and 1 to interpolate

	Date: 2004-10-17 01:16:50

	By: snehpyhehttuoekatdnatahwwonkuoy.liamg@rood-nosiop-saionarap

Couldn't #2 be sped up a hair by commenting out

float c0 = y1;

and then replacing c0 with y1 in the return line? Or do the compilers do that kind of thing automatically when they optimize?

	Date: 2007-07-13 01:52:27

	By: moc.oi@htnysa

"Couldn't #2 be sped up a hair"
It gets optimized out.

Linear interpolation

	Author or source: uh.etle.fni@yfoocs

	Type: Linear interpolators for oversampled audio

	Created: 2007-02-19 10:02:41

notes

Simple, fast linear interpolators for upsampling a signal by a factor of 2,4,8,16 or 32.
Not very usable on their own since they introduce aliasing (but still better than zero
order hold). These are best used with already oversampled signals.

-- Peter Schoffhauzer

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

	#ifndef __LIN_INTERPOLATOR_H_
#define __LIN_INTERPOLATOR_H_

/**
* Linear interpolator class *
**/

class interpolator_linear
{
public:
 interpolator_linear() {
 reset_hist();
 }

 // reset history
 void reset_hist() {
 d1 = 0.f;
 }

 // 2x interpolator
 // out: pointer to float[2]
 inline void process2x(float const in, float *out) {
 out[0] = d1 + 0.5f*(in-d1); // interpolate
 out[1] = in;
 d1 = in; // store delay
 }

 // 4x interpolator
 // out: pointer to float[4]
 inline void process4x(float const in, float *out) {
 float y = in-d1;
 out[0] = d1 + 0.25f*y; // interpolate
 out[1] = d1 + 0.5f*y;
 out[2] = d1 + 0.75f*y;
 out[3] = in;
 d1 = in; // store delay
 }

 // 8x interpolator
 // out: pointer to float[8]
 inline void process8x(float const in, float *out) {
 float y = in-d1;
 out[0] = d1 + 0.125f*y; // interpolate
 out[1] = d1 + 0.25f*y;
 out[2] = d1 + 0.375f*y;
 out[3] = d1 + 0.5f*y;
 out[4] = d1 + 0.625f*y;
 out[5] = d1 + 0.75f*y;
 out[6] = d1 + 0.875f*y;
 out[7] = in;
 d1 = in; // store delay
 }

 // 16x interpolator
 // out: pointer to float[16]
 inline void process16x(float const in, float *out) {
 float y = in-d1;
 out[0] = d1 + (1.0f/16.0f)*y; // interpolate
 out[1] = d1 + (2.0f/16.0f)*y;
 out[2] = d1 + (3.0f/16.0f)*y;
 out[3] = d1 + (4.0f/16.0f)*y;
 out[4] = d1 + (5.0f/16.0f)*y;
 out[5] = d1 + (6.0f/16.0f)*y;
 out[6] = d1 + (7.0f/16.0f)*y;
 out[7] = d1 + (8.0f/16.0f)*y;
 out[8] = d1 + (9.0f/16.0f)*y;
 out[9] = d1 + (10.0f/16.0f)*y;
 out[10] = d1 + (11.0f/16.0f)*y;
 out[11] = d1 + (12.0f/16.0f)*y;
 out[12] = d1 + (13.0f/16.0f)*y;
 out[13] = d1 + (14.0f/16.0f)*y;
 out[14] = d1 + (15.0f/16.0f)*y;
 out[15] = in;
 d1 = in; // store delay
 }

 // 32x interpolator
 // out: pointer to float[32]
 inline void process32x(float const in, float *out) {
 float y = in-d1;
 out[0] = d1 + (1.0f/32.0f)*y; // interpolate
 out[1] = d1 + (2.0f/32.0f)*y;
 out[2] = d1 + (3.0f/32.0f)*y;
 out[3] = d1 + (4.0f/32.0f)*y;
 out[4] = d1 + (5.0f/32.0f)*y;
 out[5] = d1 + (6.0f/32.0f)*y;
 out[6] = d1 + (7.0f/32.0f)*y;
 out[7] = d1 + (8.0f/32.0f)*y;
 out[8] = d1 + (9.0f/32.0f)*y;
 out[9] = d1 + (10.0f/32.0f)*y;
 out[10] = d1 + (11.0f/32.0f)*y;
 out[11] = d1 + (12.0f/32.0f)*y;
 out[12] = d1 + (13.0f/32.0f)*y;
 out[13] = d1 + (14.0f/32.0f)*y;
 out[14] = d1 + (15.0f/32.0f)*y;
 out[15] = d1 + (16.0f/32.0f)*y;
 out[16] = d1 + (17.0f/32.0f)*y;
 out[17] = d1 + (18.0f/32.0f)*y;
 out[18] = d1 + (19.0f/32.0f)*y;
 out[19] = d1 + (20.0f/32.0f)*y;
 out[20] = d1 + (21.0f/32.0f)*y;
 out[21] = d1 + (22.0f/32.0f)*y;
 out[22] = d1 + (23.0f/32.0f)*y;
 out[23] = d1 + (24.0f/32.0f)*y;
 out[24] = d1 + (25.0f/32.0f)*y;
 out[25] = d1 + (26.0f/32.0f)*y;
 out[26] = d1 + (27.0f/32.0f)*y;
 out[27] = d1 + (28.0f/32.0f)*y;
 out[28] = d1 + (29.0f/32.0f)*y;
 out[29] = d1 + (30.0f/32.0f)*y;
 out[30] = d1 + (31.0f/32.0f)*y;
 out[31] = in;
 d1 = in; // store delay
 }

private:
 float d1; // previous input
};

#endif

Comments

	Date: 2013-03-31 20:45:21

	By: moc.liamg@jdcisumff

I incorporated the 32x interpolator with something along this

void process32x(float const in_l, float const in_r, float *out_l, float *out_r)
{
 float y_l = in_l-f_d1_l;
 out_l[0] = f_d1_l + (1.0f/32.0f)*y_l; // interpolate
 out_l[1] = f_d1_l + (2.0f/32.0f)*y_l;
 out_l[2] = f_d1_l + (3.0f/32.0f)*y_l;
 out_l[3] = f_d1_l + (4.0f/32.0f)*y_l;
 out_l[4] = f_d1_l + (5.0f/32.0f)*y_l;
 out_l[5] = f_d1_l + (6.0f/32.0f)*y_l;
 out_l[6] = f_d1_l + (7.0f/32.0f)*y_l;
 out_l[7] = f_d1_l + (8.0f/32.0f)*y_l;
 out_l[8] = f_d1_l + (9.0f/32.0f)*y_l;
 out_l[9] = f_d1_l + (10.0f/32.0f)*y_l;
 out_l[10] = f_d1_l + (11.0f/32.0f)*y_l;
 out_l[11] = f_d1_l + (12.0f/32.0f)*y_l;
 out_l[12] = f_d1_l + (13.0f/32.0f)*y_l;
 out_l[13] = f_d1_l + (14.0f/32.0f)*y_l;
 out_l[14] = f_d1_l + (15.0f/32.0f)*y_l;
 out_l[15] = f_d1_l + (16.0f/32.0f)*y_l;
 out_l[16] = f_d1_l + (17.0f/32.0f)*y_l;
 out_l[17] = f_d1_l + (18.0f/32.0f)*y_l;
 out_l[18] = f_d1_l + (19.0f/32.0f)*y_l;
 out_l[19] = f_d1_l + (20.0f/32.0f)*y_l;
 out_l[20] = f_d1_l + (21.0f/32.0f)*y_l;
 out_l[21] = f_d1_l + (22.0f/32.0f)*y_l;
 out_l[22] = f_d1_l + (23.0f/32.0f)*y_l;
 out_l[23] = f_d1_l + (24.0f/32.0f)*y_l;
 out_l[24] = f_d1_l + (25.0f/32.0f)*y_l;
 out_l[25] = f_d1_l + (26.0f/32.0f)*y_l;
 out_l[26] = f_d1_l + (27.0f/32.0f)*y_l;
 out_l[27] = f_d1_l + (28.0f/32.0f)*y_l;
 out_l[28] = f_d1_l + (29.0f/32.0f)*y_l;
 out_l[29] = f_d1_l + (30.0f/32.0f)*y_l;
 out_l[30] = f_d1_l + (31.0f/32.0f)*y_l;
 out_l[31] = in_l;
 f_d1_l = in_l; // store delay_l

 float y_r = in_r-f_d1_r;
 out_r[0] = f_d1_r + (1.0f/32.0f)*y_r; // inrterpolate
 out_r[1] = f_d1_r + (2.0f/32.0f)*y_r;
 out_r[2] = f_d1_r + (3.0f/32.0f)*y_r;
 out_r[3] = f_d1_r + (4.0f/32.0f)*y_r;
 out_r[4] = f_d1_r + (5.0f/32.0f)*y_r;
 out_r[5] = f_d1_r + (6.0f/32.0f)*y_r;
 out_r[6] = f_d1_r + (7.0f/32.0f)*y_r;
 out_r[7] = f_d1_r + (8.0f/32.0f)*y_r;
 out_r[8] = f_d1_r + (9.0f/32.0f)*y_r;
 out_r[9] = f_d1_r + (10.0f/32.0f)*y_r;
 out_r[10] = f_d1_r + (11.0f/32.0f)*y_r;
 out_r[11] = f_d1_r + (12.0f/32.0f)*y_r;
 out_r[12] = f_d1_r + (13.0f/32.0f)*y_r;
 out_r[13] = f_d1_r + (14.0f/32.0f)*y_r;
 out_r[14] = f_d1_r + (15.0f/32.0f)*y_r;
 out_r[15] = f_d1_r + (16.0f/32.0f)*y_r;
 out_r[16] = f_d1_r + (17.0f/32.0f)*y_r;
 out_r[17] = f_d1_r + (18.0f/32.0f)*y_r;
 out_r[18] = f_d1_r + (19.0f/32.0f)*y_r;
 out_r[19] = f_d1_r + (20.0f/32.0f)*y_r;
 out_r[20] = f_d1_r + (21.0f/32.0f)*y_r;
 out_r[21] = f_d1_r + (22.0f/32.0f)*y_r;
 out_r[22] = f_d1_r + (23.0f/32.0f)*y_r;
 out_r[23] = f_d1_r + (24.0f/32.0f)*y_r;
 out_r[24] = f_d1_r + (25.0f/32.0f)*y_r;
 out_r[25] = f_d1_r + (26.0f/32.0f)*y_r;
 out_r[26] = f_d1_r + (27.0f/32.0f)*y_r;
 out_r[27] = f_d1_r + (28.0f/32.0f)*y_r;
 out_r[28] = f_d1_r + (29.0f/32.0f)*y_r;
 out_r[29] = f_d1_r + (30.0f/32.0f)*y_r;
 out_r[30] = f_d1_r + (31.0f/32.0f)*y_r;
 out_r[31] = in_r;
 f_d1_r = in_r; // store delay_r
}

Unfortunately, I am doing something crazy wrong. When I close my plug-in, my DAW freezes. I'm fairly new to programming and am not sure what I'm doing wrong.

I'm using your function to write to an audio buffer which is being set to a delay. This is what the call looks like.
process32x((fLeftAudioBuffer[i] * decay), (fRightAudioBuffer[i] * decay),
 &fCircularLeftAudioBuffer[(fCircularBufferPosition + delayFrames)%kCircularBufferSize],
 &fCircularRightAudioBuffer[(fCircularBufferPosition + delayFrames)%kCircularBufferSize]);

I would love to use this function because it's one line less than how I usually do it. It works great with no problems.
fCircularLeftAudioBuffer[(fCircularBufferPosition + delayFrames)%kCircularBufferSize] = fLeftAudioBuffer[jh] * decay;
fCircularRightAudioBuffer[(fCircularBufferPosition + delayFrames)%kCircularBufferSize] = fRightAudioBuffer[jh] * decay;

Everything seems simple, but I'm puzzled as to what may be wrong. Thanks.

	Date: 2013-03-31 22:18:36

	By: moc.liamg@jdcisumff

Never mind. I was calling the function from the wrong place. Works like a charm.

Thank you.

Lock free fifo

	Author or source: Timo

	Created: 2002-09-13 16:21:59

	Linked files: LockFreeFifo.h.

notes

Simple implementation of a lock free FIFO.

Comments

	Date: 2003-04-15 11:17:31

	By: moc.oohay@SIHTEVOMER_ralohcshsoj

There is a good algorithm for a lock free (but multiprocessor safe) FIFO. But the given implimentation is flawed in a number of ways. This code is not reliable. Two problems on the surface of it:
1. I can easily see that it's possible for two threads/processors to return the same item from the head if the timing is right.
2. there's no interlocked instructions to make sure that changes to the shared variables are globally visible
3. there's not attempt in the code to make sure that data is read in an atomic way, let alone changed in one...

The code is VERY naive

I do have code that works, but it's not so short that will post it in a comment. If anyone needs it they can email me

	Date: 2003-05-15 19:16:24

	By: Timo

This is only supposed to work on uniprocessor machines with _one_ reading and _one_ writing thread
assuming that the assignments to read and write idx are simple mov instructions (i.e. atomic). To be sure you'd need to write the update parts in hand-coded asm; never know what the compiler comes up with. The context of this code was omitted (i.e. Bram posted my written in 1 min sketch in a discussion on IRC on a lock-free fifo, not production code).

MATLAB-Tools for SNDAN

	Author or source: Markus Sapp

	Created: 2002-01-17 03:11:05

	Linked files: other001.zip.

notes

(see linkfile)

MIDI note/frequency conversion

	Author or source: ed.bew@raebybot

	Type: -

	Created: 2002-11-25 18:14:17

notes

I get often asked about simple things like MIDI note/frequency conversion, so I thought I
could as well post some source code about this.
The following is Pascal/Delphi syntax, but it shouldn't be a problem to convert it to
almost any language in no time.

Uses for this code are mainly for initializing oscillators to the right frequency based
upon a given MIDI note, but you might also check what MIDI note is closest to a given
frequency for pitch detection etc.
In realtime applications it might be a good idea to get rid of the power and log2
calculations and generate a lookup table on initialization.

A full Pascal/Delphi unit with these functions (including lookup table generation) and a
simple demo application can be downloaded here:
http://tobybear.phreque.com/dsp_conv.zip

If you have any comments/suggestions, please send them to: tobybear@web.de

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

	// MIDI NOTE/FREQUENCY CONVERSIONS

const notes:array[0..11] of string= ('C ','C#','D ','D#','E ','F ','F#','G ','G#','A ','A#','B ');
const base_a4=440; // set A4=440Hz

// converts from MIDI note number to frequency
// example: NoteToFrequency(12)=32.703
function NoteToFrequency(n:integer):double;
begin
 if (n>=0)and(n<=119) then
 result:=base_a4*power(2,(n-57)/12)
 else result:=-1;
end;

// converts from MIDI note number to string
// example: NoteToName(12)='C 1'
function NoteToName(n:integer):string;
begin
 if (n>=0)and(n<=119) then
 result:=notes[n mod 12]+inttostr(n div 12)
 else result:='---';
end;

// converts from frequency to closest MIDI note
// example: FrequencyToNote(443)=57 (A 4)
function FrequencyToNote(f:double):integer;
begin
 result:=round(12*log2(f/base_a4))+57;
end;

// converts from string to MIDI note
// example: NameToNote('A4')=57
function NameToNote(s:string):integer;
var c,i:integer;
begin
 if length(s)=2 then s:=s[1]+' '+s[2];
 if length(s)<>3 then begin result:=-1;exit end;
 s:=uppercase(s);
 c:=-1;
 for i:=0 to 11 do
 if notes[i]=copy(s,1,2) then
 begin
 c:=i;
 break
 end;
 try
 i:=strtoint(s[3]);
 result:=i*12+c;
 except
 result:=-1;
 end;
 if c<0 then result:=-1;
end;

Comments

	Date: 2002-11-29 17:34:28

	By: ed.bew@raebybot

For the sake of completeness, here is octave fraction notation and pitch class notation:

// converts from MIDI note to octave fraction notation
// the integer part of the result is the octave number, where
// 8 is the octave starting with middle C. The fractional part
// is the note within the octave, where 1/12 represents a semitone.
// example: NoteToOct(57)=7.75
function NoteToOct(i:integer):double;
begin
 result:=3+(i div 12)+(i mod 12)/12;
end;

// converts from MIDI note to pitch class notation
// the integer part of the number is the octave number, where
// 8 is the octave starting with middle C. The
fractional part
// is the note within the octave, where a 0.01 increment is a
// semitone.
// example: NoteToPch(57)=7.09
function NoteToPch(i:integer):double;
begin
 result:=3+(i div 12)+(i mod 12)*0.01;
end;

	Date: 2002-12-03 12:36:05

	By: moc.noicratse@ajelak

I thought most sources gave A-440Hz = MIDI note 69. MIDI 60 = middle C = ~262Hz, A-440 = "A above middle C". Not so?

	Date: 2003-05-14 03:24:58

	By: DFL

Kaleja is correct. Here is some C code:

 double MIDItoFreq(char keynum) {
 return 440.0 * pow(2.0, ((double)keynum - 69.0) / 12.0);
 }

you can double-check the table here:
http://tomscarff.tripod.com/midi_analyser/midi_note_frequency.htm

Matlab Time Domain Impulse Response Inverter/Divider

	Author or source: moc.sdohtemenacra@enacra

	Created: 2005-01-19 22:27:15

notes

Matlab code for time domain inversion of an impulse response or the division of two of
them (transfer function.) The main teoplitz function is given both as a .m file and as a
.c file for Matlab'w MEX compilation. The latter is much faster.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

	function inv=invimplms(den,n,d)
% syntax inv=invimplms(den,n,d)
% den - denominator impulse
% n - length of result
% d - delay of result
% inv - inverse impulse response of length n with delay d
%
% Levinson-Durbin algorithm from Proakis and Manolokis p.865
%
% Author: Bob Cain, May 1, 2001 arcane[AT]arcanemethods[DOT]com

 m=xcorr(den,n-1);
 m=m(n:end);
 b=[den(d+1:-1:1);zeros(n-d-1,1)];
 inv=toepsolve(m,b);

function quo=divimplms(num,den,n,d)
%Syntax quo=divimplms(num,den,n,d)
% num - numerator impulse
% den - denominator impulse
% n - length of result
% d - delay of result
% quo - quotient impulse response of length n delayed by d
%
% Levinson-Durbin algorithm from Proakis and Manolokis p.865
%
% Author: Bob Cain, May 1, 2001 arcane@arcanemethods.com

 m=xcorr(den,n-1);
 m=m(n:end);
 b=xcorr([zeros(d,1);num],den,n-1);
 b=b(n:-1:1);
 quo=toepsolve(m,b);

function hinv=toepsolve(r,q)
% Solve Toeplitz system of equations.
% Solves R*hinv = q, where R is the symmetric Toeplitz matrix
% whos first column is r
% Assumes all inputs are real
% Inputs:
% r - first column of Toeplitz matrix, length n
% q - rhs vector, length n
% Outputs:
% hinv - length n solution
%
% Algorithm from Roberts & Mullis, p.233
%
% Author: T. Krauss, Sept 10, 1997
%
% Modified: R. Cain, Dec 16, 2004 to remove a pair of transposes
% that caused errors.

 n=length(q);
 a=zeros(n+1,2);
 a(1,1)=1;

 hinv=zeros(n,1);
 hinv(1)=q(1)/r(1);

 alpha=r(1);
 c=1;
 d=2;

 for k=1:n-1,
 a(k+1,c)=0;
 a(1,d)=1;
 beta=0;
 j=1:k;
 beta=sum(r(k+2-j).*a(j,c))/alpha;
 a(j+1,d)=a(j+1,c)-beta*a(k+1-j,c);
 alpha=alpha*(1-beta^2);
 hinv(k+1,1)=(q(k+1)-sum(r(k+2-j).*hinv(j,1)))/alpha;
 hinv(j)=hinv(j)+a(k+2-j,d)*hinv(k+1);
 temp=c;
 c=d;
 d=temp;
 end

-----What follows is the .c version of toepsolve--------

#include <math.h>
#include "mex.h"

/* function hinv = toepsolve(r,q);
 * TOEPSOLVE Solve Toeplitz system of equations.
 * Solves R*hinv = q, where R is the symmetric Toeplitz matrix
 * whos first column is r
 * Assumes all inputs are real
 * Inputs:
 * r - first column of Toeplitz matrix, length n
 * q - rhs vector, length n
 * Outputs:
 * hinv - length n solution
 *
 * Algorithm from Roberts & Mullis, p.233
 *
 * Author: T. Krauss, Sept 10, 1997
 *
 * Modified: R. Cain, Dec 16, 2004 to replace unnecessasary
 * n by n matrix allocation for a with an n by 2 rotating
 * buffer and to more closely match the .m function.
 */
void mexFunction(
 int nlhs,
 mxArray *plhs[],
 int nrhs,
 const mxArray *prhs[]
)
{
 double (*a)[2],*hinv,alpha,beta;
 int c,d,temp,j,k;

 double eps = mxGetEps();
 int n = (mxGetN(prhs[0])>=mxGetM(prhs[0])) ? mxGetN(prhs[0]) : mxGetM(prhs[0]) ;
 double *r = mxGetPr(prhs[0]);
 double *q = mxGetPr(prhs[1]);

 a = (double (*)[2])mxCalloc((n+1)*2,sizeof(double));
 if (a == NULL) {
 mexErrMsgTxt("Sorry, failed to allocate buffer.");
 }
 a[0][0]=1.0;

 plhs[0] = mxCreateDoubleMatrix(n,1,0);
 hinv = mxGetPr(plhs[0]);
 hinv[0] = q[0]/r[0];

 alpha=r[0];
 c=0;
 d=1;

 for (k = 1; k < n; k++) {
 a[k][c] = 0;
 a[0][d] = 1.0;
 beta = 0.0;
 for (j = 1; j <= k; j++) {
 beta += r[k+1-j]*a[j-1][c];
 }
 beta /= alpha;
 for (j = 1; j <= k; j++) {
 a[j][d] = a[j][c] - beta*a[k-j][c];
 }
 alpha *= (1 - beta*beta);
 hinv[k] = q[k];
 for (j = 1; j <= k; j++) {
 hinv[k] -= r[k+1-j]*hinv[j-1];
 }
 hinv[k] /= alpha;
 for (j = 1; j <= k; j++) {
 hinv[j-1] += a[k+1-j][d]*hinv[k];
 }
 temp=c;
 c=d;
 d=temp;
 } /* loop over k */

 mxFree(a);

 return;
}

Millimeter to DB (faders…)

	Author or source: James McCartney

	Created: 2002-04-09 16:55:26

notes

These two functions reproduce a traditional professional
mixer fader taper.

MMtoDB converts millimeters of fader travel from the
bottom of the fader for a 100 millimeter fader into
decibels. DBtoMM is the inverse.

The taper is as follows from the top:
The top of the fader is +10 dB
100 mm to 52 mm : -5 dB per 12 mm
52 mm to 16 mm : -10 dB per 12 mm
16 mm to 4 mm : -20 dB per 12 mm
4 mm to 0 mm : fade to zero. (in these functions I go to -200dB
which is effectively zero for up to 32 bit audio.)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	float MMtoDB(float mm)
{
 float db;

 mm = 100. - mm;

 if (mm <= 0.) {
 db = 10.;
 } else if (mm < 48.) {
 db = 10. - 5./12. * mm;
 } else if (mm < 84.) {
 db = -10. - 10./12. * (mm - 48.);
 } else if (mm < 96.) {
 db = -40. - 20./12. * (mm - 84.);
 } else if (mm < 100.) {
 db = -60. - 35. * (mm - 96.);
 } else db = -200.;
 return db;
}

float DBtoMM(float db)
{
 float mm;
 if (db >= 10.) {
 mm = 0.;
 } else if (db > -10.) {
 mm = -12./5. * (db - 10.);
 } else if (db > -40.) {
 mm = 48. - 12./10. * (db + 10.);
 } else if (db > -60.) {
 mm = 84. - 12./20. * (db + 40.);
 } else if (db > -200.) {
 mm = 96. - 1./35. * (db + 60.);
 } else mm = 100.;

 mm = 100. - mm;

 return mm;
}

Comments

	Date: 2004-01-29 21:31:18

	By: ed.luosfosruoivas@naitsirhC

Pascal Translation...

function MMtoDB(Milimeter:Single):Single;
var mm: Single;
begin
 mm:=100-Milimeter;
 if mm = 0 then Result:=10
 else if mm < 48 then Result:=10-5/12*mm;
 else if mm < 84 then Result:=-10-10/12*(mm-48);
 else if mm < 96 then Result:=-40-20./12*(mm-84);
 else if mm < 100 then Result:=-60-35*(mm-96);
 else Result:=-200.;
end;

function DBtoMM(db:Single):Single;
begin
 if db>=10 then result:=0;
 else if db>-10 then result:=-12/5*(db-10);
 else if db>-40 then result:=48-12/10(db+10);
 else if db>-60 then result:=84-12/20(db+40);
 else if db>-200 then result:=96-1/35(db+60);
 else result:=100.;
 Result:=100-Result;
end;

	Date: 2010-03-11 22:31:06

	By: moc.liamg@rellomehcssih.retuow

Flash ActionScript translation:

/**
 * Maps normalized value between 0 and 1 to decibel from -200 to 10.
 * @param normalizedValue: Value between 0 and 1.
 * @return Number: Value in decibel from -200 to 10.
 */
public function normalizedToDecibel(value : Number) : Number
{
 value = (1 - value) * 100;

 if(value <= 0.0) var db : Number = 10.0;
 else if(value < 48.0) db = 10.0 - 5.0 / 12.0 * value;
 else if(value < 84.0) db = -10.0 - 10.0 / 12.0 * (value - 48.0);
 else if(value < 96.0) db = -40.0 - 20.0 / 12.0 * (value - 84.0);
 else if(value < 100.0) db = -60.0 - 35.0 * (value - 96.0);
 else db = -200.0;

 return db;
}

/**
 * Maps decibel from -200 to 10 to normalized value between 0 and 1.
 * @param decibel: Value in decibel from -200 to 10.
 * @return Number:
 */
public function decibelToNormalized(decibel : Number) : Number
{
 if(decibel >= 10.0) var normalizedValue : Number = 0.0;
 else if (decibel > -10.0) normalizedValue = -12.0 / 5.0 * (decibel - 10.0);
 else if (decibel > -40.0) normalizedValue = 48.0 - 12.0 / 10.0 * (decibel + 10.0);
 else if (decibel > -60.0) normalizedValue = 84.0 - 12.0 / 20.0 * (decibel + 40.0);
 else if (decibel > -200.0) normalizedValue = 96.0 - 1.0 / 35.0 * (decibel + 60.0);
 else normalizedValue = 100.0;

 return (100.0 - normalizedValue) / 100.0;
}

Motorola 56300 Disassembler

	Author or source: moc.ngisedigid@dnesnwot_sirhc

	Type: disassembler

	Created: 2005-05-24 07:08:07

	Linked files: Disassemble56k.zip.

notes

This code contains functions to disassemble Motorola 56k opcodes. The code was originally
created by Stephen Davis at Stanford. I made minor modifications to support many 56300
opcodes, although it would nice to add them all at some point. Specifically, I added
support for CLB, NORMF, immediate AND, immediate OR, multi-bit ASR/ASL, multi-bit LSL/LSR,
MAX, MAXM, BRA, Bcc, BSR, BScc, DMAC, MACsu, MACuu, and conditional ALU instructions.

Comments

	Date: 2005-05-24 20:33:25

	By: jawoll

nice! let's disassemble virus c, nord lead 3, ...

	Date: 2005-09-29 19:51:55

	By: moc.liamg@rhajile

Very nice. How would one get ahold of the OS for one of these synths, to disassemble it? I've got a Nord Micro, with a single 56303... question is.... how to get the OS from the flash?

	Date: 2011-07-11 08:58:10

	By: ach nö

After a first look inside the c file i found out that the header file "Utility56k.h" is missing which is included in the code file...

Noise Shaping Class

	Author or source: ude.anaidni@iehsc

	Type: Dithering with 9th order noise shaping

	Created: 2002-04-23 06:49:06

	Linked files: NS9dither16.h.

notes

This is an implemetation of a 9th order noise shaping & dithering class, that runs quite
fast (it has one function that uses Intel x86 assembly, but you can replace it with a
different rounding function if you are running on a non-Intel platform). _aligned_malloc
and _aligned_free require the MSVC++ Processor Pack, available from www.microsoft.com.
You can replace them with "new" and "delete," but allocating aligned memory seems to make
it run faster. Also, you can replace ZeroMemory with a memset that sets the memory to 0
if you aren't using Win32.
Input should be floats from -32768 to 32767 (processS will clip at these points for you,
but clipping is bad when you are trying to convert floats to shorts). Note to reviewer -
it would probably be better if you put the code in a file such as NSDither.h and have a
link to it - it's rather long.

(see linked file)

Comments

	Date: 2003-05-14 14:01:22

	By: mail[ns]@mutagene.net

I haven't tried this class out, but it looks like there's a typo in the unrolled loop -- shouldn't it read "c[2]*EH[HistPos+2]"? This might this also account for the 3 clock cycle improvement on a P-III.

// This arrangement seems to execute 3 clock cycles faster on a P-III
samp -= c[8]*EH[HistPos+8] + c[7]*EH[HistPos+7] + c[6]*EH[HistPos+6] +
c[5]*EH[HistPos+5] + c[4]*EH[HistPos+4] + c[3]*EH[HistPos+3] + c[2]*EH[HistPos+1] +
c[1]*EH[HistPos+1] + c[0]*EH[HistPos];

	Date: 2005-02-15 15:18:55

	By: moc.tnemarkas@vokiahc

Great class! But I found one more mistake: function my_mod(9, 9) gives 9 instead of 0 (9 % 9 = 0).

HistPos = my_mod((HistPos+8), order);
EH[HistPos+9] = EH[HistPos] = output - samp;

 -> HistPos + 9 = 18 (max EH index is 17) which leads to out of array boundary and crash.

So my_mod should look like:

__inline my_mod(int x, int n)
{
 if(x >= n) x-=n;
 return x;
}

Nonblocking multiprocessor/multithread algorithms in C++

	Author or source: moc.oohay@ralohcshsoj

	Type: queue, stack, garbage collection, memory allocation, templates for atomic algorithms and types

	Created: 2004-04-07 09:38:12

	Linked files: ATOMIC.H.

notes

see linked file...

Comments

	Date: 2008-01-10 17:01:39

	By: ten.xliamnahx@xmagie

This code has a problem with operation exceeding 4G times. If you do more then 4G of Put and Get with the MPQueue, "AtomicUInt & Index(int i) { return data[i & (len-1)];} will cause BUG.
Modular operation with length of 2^n is OK, but not for other numbers.
My email does not have any "x" letters.

	Date: 2011-05-23 22:22:21

	By: ude.fcu.sc@awajuk

In MPCountStack::PopElement, what's to prevent another thread from deleting was.Value().ptr between assigning was and reading was.Value().ptr->next?

Piecewise quadratic approximate exponential function

	Author or source: Johannes M.-R.

	Type: Approximation of base-2 exponential function

	Created: 2007-06-18 08:09:58

notes

The code assumes round-to-zero mode, and ieee 754 float.
To achieve other bases, multiply the input by the logarithmus dualis of the base.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	inline float fpow2(const float y)
{
 union
 {
 float f;
 int i;
 } c;

 int integer = (int)y;
 if(y < 0)
 integer = integer-1;

 float frac = y - (float)integer;

 c.i = (integer+127) << 23;
 c.f *= 0.33977f*frac*frac + (1.0f-0.33977f)*frac + 1.0f;

 return c.f;
}

Pow(x,4) approximation

	Author or source: Stefan Stenzel

	Created: 2002-01-17 03:09:20

notes

Very hacked, but it gives a rough estimate of x**4 by modifying exponent and mantissa.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	float p4fast(float in)
{
 long *lp,l;

 lp=(long *)(&in);
 l=*lp;

 l-=0x3F800000l; /* un-bias */
 l<<=2; /* **4 */
 l+=0x3F800000l; /* bias */
 *lp=l;

 /* compiler will read this from memory since & operator had been used */
 return in;
}

Rational tanh approximation

	Author or source: cschueler

	Type: saturation

	Created: 2006-11-15 17:29:12

notes

This is a rational function to approximate a tanh-like soft clipper. It is based on the
pade-approximation of the tanh function with tweaked coefficients.

The function is in the range x=-3..3 and outputs the range y=-1..1. Beyond this range the
output must be clamped to -1..1.

The first to derivatives of the function vanish at -3 and 3, so the transition to the hard
clipped region is C2-continuous.

code

	1
2
3
4
5
6
7
8
9

	float rational_tanh(x)
{
 if(x < -3)
 return -1;
 else if(x > 3)
 return 1;
 else
 return x * (27 + x * x) / (27 + 9 * x * x);
}

Comments

	Date: 2006-11-24 16:24:54

	By: uh.etle.fni@yfoocs

Works fine. If you want only a little overdrive, you don't even need the clipping, just the last line for faster processing.

float rational_tanh_noclip(x)
{
 return x * (27 + x * x) / (27 + 9 * x * x);
}

The maximum error of this function in the -4.5 .. 4.5 range is about 2.6%.

	Date: 2006-11-30 15:59:33

	By: uh.etle.fni@yfoocs

By the way this is the fastest tanh() approximation in the archive so far.

	Date: 2006-12-08 21:21:02

	By: cschueler

Yep, I thought so.
That's why I thought it would be worth sharing.

Especially fast when using SSE you can do a 4-way parallel implementation, with MIN/MAX and the RCP instruction.

	Date: 2007-01-26 12:13:50

	By: mdsp

nice one

BTW if you google about "pade-approximation" you'll find a nice page with many solutions for common functions.

there's exp, log, sin, cos, tan, gaussian...

	Date: 2007-02-18 03:35:13

	By: uh.etle.fni@yfoocs

Yep, but the RCP increases the noise floor somewhat, giving a quantized sound, so I'd refrain from using it for high quality audio.

Reading the compressed WA! parts in gigasampler files

	Author or source: Paul Kellett

	Created: 2002-02-18 00:51:08

	Linked files: gigxpand.zip.

notes

(see linkfile)
Code to read the .WA! (compressed .WAV) parts of GigaSampler .GIG files.
For related info on reading .GIG files see http://www.linuxdj.com/evo

Really fast x86 floating point sin/cos

	Author or source: moc.nsm@seivadrer

	Created: 2003-11-25 17:43:28

	Linked files: sincos.zip.

notes

Frightful code from the Intel Performance optimization front. Not for the squeamish.

The following code calculates sin and cos of a floating point value on x86 platforms to 20
bits precision with 2 multiplies and two adds. The basic principle is to use sin(x+y) and
cos(x+y) identities to generate the result from lookup tables. Each lookup table takes
care of 10 bits of precision in the input. The same principle can be used to generate
sin/cos to full (! Really. Full!) 24-bit float precision using two 8-bit tables, and one
10 bit table (to provide guard bits), for a net speed gain of about 4x over fsin/fcos, and
8x if you want both sin and cos. Note that microsoft compilers have trouble keeping
doubles aligned properly on the stack (they must be 8-byte aligned in order not to incur
a massive alignment penalty). As a result, this class should NOT be allocated on the
stack. Add it as a member variable to any class that uses it.

e.g.
 class CSomeClass {
 CQuickTrig m_QuickTrig;
 ...
 mQuickTrig.QuickSinCos(dAngle,fSin,fCos);
 ...
 }

code

	1

	(see attached file)

Reasonably accurate/fastish tanh approximation

	Author or source: Fuzzpilz

	Created: 2004-08-17 22:56:29

notes

Fairly obvious, but maybe not obvious enough, since I've seen calls to tanh() in code
snippets here.

It's this, basically:

tanh(x) = sinh(x)/cosh(x)
 = (exp(x) - exp(-x))/(exp(x) + exp(-x))
 = (exp(2x) - 1)/(exp(2x) + 1)

Combine this with a somewhat less accurate approximation for exp than usual (I use a
third-order Taylor approximation below), and you're set. Useful for waveshaping.

Notes on the exp approximation:

It only works properly for input values above x, but since tanh is odd, that isn't a
problem.

exp(x) = 1 + x + x^2/(2!) + x^3/(3!) + ...

Breaking the Taylor series off after the third term, I get

1 + x + x^2/2 + x^3/6.

I can save some multiplications by using

6 + x * (6 + x * (3 + x))

instead; a division by 6 becomes necessary, but is lumped into the additions in the tanh
part:

(a/6 - 1)/(a/6 + 1) = (a - 6)/(a + 6).

Accuracy:

I haven't looked at this in very great detail, but it's always <= the real tanh (>= for
x<0), and the greatest deviation occurs at about +/- 1.46, where the result is ca. .95
times the correct value.

This is still faster than tanh if you use a better approximation for the exponential, even
if you simply call exp.
There are probably additional ways of improving parts of this, and naturally if you're
going to use it you'll want to figure out whether your particular application offers
additional ways of simplifying it, but it's a good start.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	/* single precision absolute value, a lot faster than fabsf() (if you use MSVC++ 6 Standard - others' implementations might be less slow) */
float sabs(float a)
{
int b=(*((int *)(&a)))&0x7FFFFFFF;
return *((float *)(&b));
}

/* approximates tanh(x/2) rather than tanh(x) - depending on how you're using this, fixing that could well be wasting a multiplication (though that isn't much, and it could be done with an integer addition in sabs instead) */
float tanh2(float x)
{
float a=sabs(x);
a=6+a*(6+a*(3+a));
return ((x<0)?-1:1)*(a-6)/(a+6); /* instead of using <, you can also check directly whether the sign bit is set ((*((int *)(&x)))&0x80000000), but it's not really worth it */
}

Comments

	Date: 2004-09-19 03:08:02

	By: ten.xmg@zlipzzuf

Not sure why this didn't occur to me earlier, but you can easily save another two adds as follows:

a*=(6+a*(3+a));
return ((x<0)?-1:1)*a/(a+12);

	Date: 2004-10-06 22:46:23

	By: moc.noicratse@ajelak

You shouldn't need the sabs() on VC6 - you just need to add:

#pragma intrinsic(fabs)

before calling fabsf(), and it should go optimally fast.

	Date: 2004-10-07 10:56:45

	By: Laurent de Soras

You can optimise it a bit more by using the fact that tanh (x) = 1 - 2 / (exp (2*x) + 1)

	Date: 2004-10-07 11:38:00

	By: ten.xmg@zlipzzuf

AFAIK intrinsics aren't supported by VC6 Standard, but limited to Professional and Enterprise. Might be wrong, though, in which case I am a silly person. (no time to check now)

	Date: 2005-03-23 22:48:34

	By: ed.luosfosruoivas@naitsirhC

Delphi Code:

// approximates tanh(x/2) rather than tanh(x) - depending on how you're using
// this, fixing that could well be wasting a multiplication
function tanh2(x:single):Single;
var a : single;
begin
 a:=f_abs(x);
 a:=a*(12+a*(6+a*(3+a)));
 if (x<0)
 then result:=-a/(a+24)
 else result:= a/(a+24);
end;

	Date: 2005-03-23 23:01:49

	By: ed.luosfosruoivas@naitsirhC

Laurent de Soras wrote:
"You can optimise it a bit more by using the fact that tanh (x) = 1 - 2 / (exp (2*x) + 1)"

It's not faster, because you'll need 3 more cycles. The routine would then look like this:

function tanh2(x:single):Single;
var a : single;
begin
 a:=f_abs(x);
 a:=24+a*(12+a*(6+a*(3+a)));
 if (x<0)
 then result:= (-1+24/a)
 else result:= (1-24/a);
end;

	Date: 2005-05-09 02:37:33

	By: eb.tenyks@didid

I must have missed this one..
but why is the comparison needed?

a simpler version would be:
a:=Abs(x)
Result:=x*(6+a*(3+a))/(a+12)

no?

So in asm:

function Tanh2(x:Single):Single;
const c3 :Single=3;
 c6 :Single=6;
 c12:Single=12;
Asm
 FLD x
 FLD ST(0)
 FABS
 FLD c3
 FADD ST(0),ST(1)
 FMUL ST(0),ST(1)
 FADD c6
 FMULP ST(2),ST(0)
 FADD c12
 FDIVP ST(1),ST(0)
End;

..but almost all the CPU is wasted by the division anyway

	Date: 2005-05-09 03:11:16

	By: eb.tenyks@didid

wait.. has anyone tested this function?

Here's a test plot:
http://www.flstudio.com/gol/tanh.gif

Red=TanH

Green=the approximation suggested in this thread

Blue=another approximation that does:

function TanH3(x:Single):Single;
Begin
Result:=x - x*x*x/3 + 2*x*x*x*x*x/15;
end;

If I didn't do anything wrong, the green one is VERY far from TanH. Blue is both closer & computationally more efficient.

But ok, this plot is for a normalized 0..1. When you go above, the blue like goes crazy.
But now considering that -1..1 is what matters the most for what we do, the input could still be clipped.

	Date: 2005-05-09 03:23:10

	By: eb.tenyks@didid

forget all this :)

it's all embarrassing bullshit and I obviously need some sleep :)

	Date: 2005-05-09 03:46:09

	By: eb.tenyks@didid

Ok ignore my above crap that I can't delete, I swear that this one does work :)

First I hadn't seen that this function was assuming x*2, so my graph was scaled by 2..

Second, the other algo (blue line) is still not to be neglected (because no FDIV) when the input is in the -1..1 range, and it does work.

Third, I'm suggesting here a version without the comparison/branching, but still, the CPU difference is neglectable because of the FDIV.

Here it is (this one does NOT assume a premultiplied x)..

plain code:

function Tanh2(x:Single):Single;
var a,b:Single;
begin
x:=x*2;
a:=abs(x);
b:=(6+a*(3+a));
Result:=(x*b)/(a*b+12);
end;

asm:

function Tanh22(x:Single):Single;
const c3 :Single=3;
 c6 :Single=6;
 c12 :Single=12;
 Mul2:Single=2;
Asm
 FLD x
 FMUL Mul2
 FLD ST(0)
 FABS // a
 FLD c3
 FADD ST(0),ST(1)
 FMUL ST(0),ST(1)
 FADD c6 // b
 FMUL ST(2),ST(0) // x*b
 FMULP ST(1),ST(0) // a*b
 FADD c12
 FDIVP ST(1),ST(0)
End;

	Date: 2005-05-10 00:37:16

	By: ed.luosfosruoivas@naitsirhC

Any suggestions about improving the 3DNow Divide-Operation??? I simply hate my code...

procedure Transistor2_3DNow(pinp,pout : PSingle; Samples:Integer;Scalar:Single);
const ng : Array [0..1] of Integer = ($7FFFFFFF,$7FFFFFFF);
 pg : Array [0..1] of Integer = ($80000000,$80000000);
 c2 : Array [0..1] of Single = (2,2);
 c3 : Array [0..1] of Single = (3,3);
 c6 : Array [0..1] of Single = (6,6);
 c12 : Array [0..1] of Single = (12,12);
 c24 : Array [0..1] of Single = (24,24);
asm
 shr ecx,1
 femms
 movd mm1, Scalar.Single
 punpckldq mm1, mm1
 movq mm0, c2
 pfmul mm0, mm1

 movq mm3, c3
 movq mm4, c6
 movq mm5, c12
 movq mm6, c24

@Start:
 movq mm1, [eax] //mm1=input
 pfmul mm1, mm0 //mm1=a
 movq mm2, mm1 //mm1=a, mm2=a

 pand mm2, ng //mm1=a, mm2=|a|

 pfadd mm3, c3 //mm1=a, mm2=|a|, mm3=|a|+3
 pfmul mm3, mm2 //mm1=a, mm2=|a|, mm3=|a|*(|a|+3)
 pfadd mm3, c6 //mm1=a, mm2=|a|, mm3=6+|a|*(3+|a|)
 pfmul mm3, mm2 //mm1=a, mm2=|a|, mm3=|a|*(6+|a|*(3+|a|))
 pfadd mm3, c12 //mm1=a, mm2=|a|, mm3=b=12+|a|*(6+|a|*(3+|a|))
 pfmul mm1, mm3 //mm1=a*b, mm2=|a|, mm3=a*(12+|a|*(6+|a|*(3+|a|)))
 pfmul mm2, mm3 //mm1=a*b, mm2=|a|*b
 pfadd mm2, c24 //mm1=a*b, mm2=|a|*b+24

 movq mm3, mm2
 pfrcp mm4, mm3
 punpckldq mm3, mm3
 pfrcpit1 mm3, mm4
 pfrcpit2 mm3, mm4
 movq mm4, mm2
 punpckhdq mm4, mm4
 pfrcp mm5, mm4
 pfrcpit1 mm4, mm5
 pfrcpit2 mm4, mm5
 punpckldq mm4, mm5
 pfmul mm1, mm4
 movq [edx],mm1
 add eax,8
 add edx,8
 loop @Start
 femms
end;

	Date: 2005-05-10 02:26:36

	By: eb.tenyks@didid

mmh why the loop? You can't process more than 2 Tanh in parallel in this filter, can you?
What CPU gain did you get btw?

Anyway, sucks that 3Dnow doesn't provide division.. SSE does, though.. DIVPS (or DIVPD to get a double accuracy in this case) would work here. Only problem is that on an AMD I usually get better performances out of 3DNow than SSE/SSE2.

	Date: 2005-05-10 11:00:10

	By: ed.luosfosruoivas@naitsirhC

The loop works perfectly well, but it's of course for Tanh() processing of a whole block instead of inside the moog filter.

The thing, that 3DNow doesn't provide division really sucks. Anyway, this way i will save a small amount of performance, but it's not huge. But i believe one can optimize the 12 lines of division further more. Also data prefetching might help a little. Or restructuring, because on AMD the order does matter!

I'll SSE/SSE2 the code tonight. I think SSE gives a good performance boost, but SSE2 precisition would be needed, if the thing is inside the moog filter (IIR Filter coefficients should allways stay 64bit to avoid digital artifacts).

Cheers,

Christian

	Date: 2005-05-11 16:41:26

	By: ed.luosfosruoivas@naitsirhC

Here's the Analog Devices "Sharc" DSP translation of the tanh function (inline processing of register f0):

f11 = 2.;
f0 = f0 * f11;
f11 = abs f0;
f3 = 3.;
f12 = f11+f3;
f12 = f11*f2;
f3 = 6.;
f12 = f12+f3;
f0 = f0*f12;
f12 = f11*f12;
f7 = 12.;
f12 = f12+f3;
f11 = 2.;
f0 = recips f12, f7=f0;
f12=f0*f12;
f7=f0*f7, f0=f11-f12;
f12=f0*f12;
f7=f0*f7, f0=f11-f12;
f12=f0*f12;
rts(db);
f7=f0*f7, f0=f11-f12;
f0=f0*f7;

it can be optimized further more, but hey...

	Date: 2006-02-25 09:57:21

	By: Gene

tanh(x/2)~ x/(abs(x)+3/(2+x*x))

better...

	Date: 2006-02-25 11:53:34

	By: Gene

tanh(x/2) ~ x/(abs(x)+2/(2.12-1.44*abs(x)+x*x))

Maximum normalized difference 0.0063 from real tanh (x/2) - good enough now.

Resampling

	Author or source: ed.corm@liam

	Type: linear interpolated aliased resampling of a wave file

	Created: 2004-04-07 09:39:12

notes

som resampling stuff. the code is heavily used in MSynth, but do not lough about ;-)

perhaps, prefiltering would reduce aliasing.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	signed short* pSample = ...;
unsigned int sampleLength = ...;

// stretch sample to length of one bar...
float playPosDelta = sampleLength / ((240.0f / bpm) * samplingRate);

// requires for position calculation...
float playpos1 = 0.0f;
unsigned int iter = 0;

// required for interpolation...
unsigned int i1, i2;

float* pDest =;
float* pDestStop = pDest + len;
for(float *pt=pDest;pt<pDestStop;++pt)
{
 // linear interpolation...
 i1 = (unsigned int)playpos;
 i2 = i1 + 1;
 (*pt) = ((pSample[i2]-pSample[i1]) * (playpos - i1) + pSample[i1]);

 // position calculation preventing float sumation error...
 playpos1 = (++iter) * playposIncrement;
}
...

Comments

	Date: 2004-02-15 12:01:50

	By: Gog

Linear interpolation normally introduces a lot of artefacts. An easy way to improve upon this is to use the hermite interpolator instead. The improvement is _dramatic_!

	Date: 2004-05-04 16:57:06

	By: moc.sulp.52retsinnab@etep

i1 = (unsigned int)playpos;
i2 = i1 + 1;

would this be better as:

i1 = (unsigned int) floor(playpos);
i2 = (unsigned int) ceil(i1 + playposIncrement);

?

if you are actually decimating rather than interpolating (which is what would give aliasing), then the second interpolation point in the input could potentially be more than i1 + 1.

	Date: 2004-05-05 11:26:57

	By: moc.sulp.52retsinnab@etep

no, sorry it wouldn't :%|

	Date: 2004-08-13 23:45:16

	By: ed.corm@liam

yes, a more sophisticated interpolation would
improve the sound and prefiltering would
terminate the aliasing. but everything with
hi runtime overhead.

Saturation

	Author or source: Bram

	Type: Waveshaper

	Created: 2002-09-19 14:27:46

notes

when the input is below a certain threshold (t) these functions return the input, if it
goes over that threshold, they return a soft shaped saturation.
Neigther claims to be fast ;-)

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	float saturate(float x, float t)
{
 if(fabs(x)<t)
 return x
 else
 {
 if(x > 0.f);
 return t + (1.f-t)*tanh((x-t)/(1-t));
 else
 return -(t + (1.f-t)*tanh((-x-t)/(1-t)));
 }
}

or

float sigmoid(x)
{
 if(fabs(x)<1)
 return x*(1.5f - 0.5f*x*x);
 else
 return x > 0.f ? 1.f : -1.f;
}

float saturate(float x, float t)
{
 if(abs(x)<t)
 return x
 else
 {
 if(x > 0.f);
 return t + (1.f-t)*sigmoid((x-t)/((1-t)*1.5f));
 else
 return -(t + (1.f-t)*sigmoid((-x-t)/((1-t)*1.5f)));
 }
}

Comments

	Date: 2002-10-15 17:22:22

	By: moc.oohay@yrret

 But My question is
BUT HAVE YOU TRIED YOUR CODE!!!!!!!!!!!!!!!!????
I think no, 'cos give a compiling error.
the right (for sintax) version is this:

float sigmoid(float x)
{
 if(fabs(x)<1)
 return x*(1.5f - 0.5f*x*x);
 else
 return x > 0.f ? 1.f : -1.f;
}

float saturate(float x, float t)
{
 if(abs(x)<t)
 return x;
 else
 {
 if(x > 0.f)
 return t + (1.f-t)*sigmoid((x-t)/((1-t)*1.5f));
 else
 return -(t + (1.f-t)*sigmoid((-x-t)/((1-t)*1.5f)));
 }
}

	Date: 2003-11-18 10:16:14

	By: moc.liamtoh@tnuhhcaebmi

except for the missing parenthesis of course =)
the first line of saturate should be either

if(fabs(x)) return x;

or

if(abs(x)) return x;

depending on whether you're looking at the first or second saturate function (in the orig post)

	Date: 2021-01-01 11:50:14

	By: DKDiveDude

The first function seems to be only a unnecessary complicated brick limit function. See below how I implemented the first function’s code. Left is a sample between -1 and 1, positiveThreshold and negativeThreshold should be self explanatory.

	if (left > positiveThreshold)

	left = positiveThreshold + (1 - positiveThreshold) * tanh ((left - positiveThreshold) / (1 - positiveThreshold));

	else if (left < negativeThreshold)

	left = -(positiveThreshold + (1 - positiveThreshold) * tanh ((-left - positiveThreshold) / (1 - positiveThreshold)));

Sin(x) Aproximation (with SSE code)

	Author or source: moc.kisuw@kmailliw

	Created: 2004-07-14 10:13:26

notes

Sin Aproximation: sin(x) = x + (x * (-x * x / 6));

This is very handy and fast, but not precise. Below you will find a simple SSE code.

Remember that all movaps command requires 16 bit aligned variables.

code

	1
2
3
4
5
6
7
8
9

	SSE code for computing only ONE value (scalar)
Replace all "ss" with "ps" if you want to calculate 4 values. And instead of "movps" use "movaps".

movss xmm1, xmm0 ; xmm0 = x
mulss xmm1, Filter_GenVal[k_n1] ; * -1
mulss xmm1, xmm0 ; -x * x
divss xmm1, Filter_GenVal[k_6] ; / 6
mulss xmm1, xmm0
addss xmm0, xmm1

Comments

	Date: 2004-10-06 22:47:58

	By: moc.noicratse@ajelak

Divides hurt. Change your constant 6 to a constant (1.0/6.0) and change divss to mulss.

	Date: 2005-05-31 05:04:05

	By: little%moc.loa@ykee02

error about 7.5% by +/- pi/2
you can improve this considerably by
fitting cubic at points -pi/2, 0, pi/2 i.e:
sin(x) = x - x^3 / 6.7901358

Sin, Cos, Tan approximation

	Author or source: http://www.wild-magic.com

	Created: 2003-04-26 00:17:56

	Linked files: approx.h.

notes

Code for approximation of cos, sin, tan and inv sin, etc.
Surprisingly accurate and very usable.

[edit by bram]
this code is taken literaly from
http://www.wild-magic.com/SourceCode.html
Go have a look at the MgcMath.h and MgcMath.cpp files in their library...
[/edit]

Comments

	Date: 2002-09-01 00:06:40

	By: moc.oi@htnysa

It'd be nice to have a note on the domain of these functions. I assume Sin0 is meant to be used about zero and Sin1 about 1. But a note to that effect would be good.
Thanks,

james mccartney

	Date: 2003-05-31 18:39:50

	By: ten.xmg@mapsedocm

Sin0 is faster but less accurate than Sin1, same for the other pairs. The domains are:

Sin/Cos [0, pi/2]
Tan [0,pi/4]
InvSin/Cos [0, 1]
InvTan [-1, 1]

This comes from the original header file.

VST SDK GUI Switch without

	Author or source: ti.oohay@odrasotniuq

	Created: 2004-09-08 12:49:11

notes

In VST GUI an on-vaue is represented by 1.0 and off by 0.0.

code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	Say you have two signals you want to switch between when the user changes a switch.
You could do:

if(fSwitch == 0.f) //fSwitch is either 0.0 or 1.0
 output = input1
else
 output = input2

However, you can avoid the branch by doing:

output = input1 * (1.f - fSwitch) + input2 * fSwitch

Which would be like a quick mix. You could make the change clickless by adding a simple one-pole filter:

smooth = filter(fSwitch)
output = input1 * (1.f - smooth) + input2 * smooth

Comments

	Date: 2004-09-17 04:12:08

	By: moc.liamg@knuhcnezitic

Not trying to be incredulous, but ... Is this really worth it? Assuming that you pre-calc the (1-fSwitch), you still have 2 multiplies and 1 add, instead of just an assignment. Are branches really bad enough to justify spending those cycles?

Also, does it matter where in the signal flow the branch is? For instance, if it were at the output, the branch wouldn't be such a problem. But at the input, with many calculations downstream, would it matter more?

Also, what if your branches are much more complicated--i.e. multiple lines per case?

	Date: 2004-09-24 17:46:57

	By: ti.oohay@odrasotniuq

I use it when I have to compute the (1-fSwitch) signal anyway.
Example: apply a LFO to amplitude and not to frequency. I compute LFO anyway, then I apply (1-fSwitch) to frequency and (fSwitch) to amplitude.

Yes, branches are really bad!:-)
This is because you "break" your cache waiting for a decision
Even if the branch is at the end of your routine, you are leaving a branch to successive code (i.e. to host)

Anyway, this is not ever worth to use, just consider single cases...

	Date: 2004-10-07 03:29:01

	By: moc.noicratse@ajelak

Kids, kids, you're both wrong!

chunk: Two multiples and an add are really cheap on modern hardware - P2/P3 take about 2 clocks for fmul and 1 clock for fadd.

quintosardo: Modern hardware also has good branch prediction, so if the switch is, e.g., a VST parameter that only changes once per process() block, it will branch the same way on the order of 100 times in a row. Correcly predicted branches are basically free; mispredicted branches blow the instruction pipeline, which is a penalty of about 20 cycles or so. If you spread the cost of a single missed prediction over 100 samples, it's cheap enough to not worry about. So yes, use this "predicate transform" to optimize away branches which are unpredictable, but don't worry about branches which are predictable.

	Date: 2014-02-07 08:22:56

	By: ten.rotaniliam@akcalabbuh

And today it is even more ridiculous to think about cycles!

Index

 _static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Musicdsp.org

 		
 Synthesis

 		
 (Allmost) Ready-to-use oscillators

 		
 AM Formantic Synthesis

 		
 Comments

 		
 Alias-free waveform generation with analog filtering

 		
 Another LFO class

 		
 Comments

 		
 Another cheap sinusoidal LFO

 		
 Comments

 		
 Antialiased square generator

 		
 Arbitary shaped band-limited waveform generation (using oversampling and low-pass filtering)

 		
 Comments

 		
 Audiable alias free waveform gen using width sine

 		
 Comments

 		
 Band Limited waveforms my way

 		
 Comments

 		
 Bandlimited sawtooth synthesis

 		
 Comments

 		
 Bandlimited waveform generation

 		
 Comments

 		
 Bandlimited waveforms synopsis.

 		
 Comments

 		
 Bandlimited waveforms…

 		
 Comments

 		
 Butterworth

 		
 Comments

 		
 C# Oscilator class

 		
 C++ gaussian noise generation

 		
 Comments

 		
 Chebyshev waveshaper (using their recursive definition)

 		
 Comments

 		
 Cubic polynomial envelopes

 		
 Comments

 		
 DSF (super-set of BLIT)

 		
 Comments

 		
 Direct pink noise synthesis with auto-correlated generator

 		
 Discrete Summation Formula (DSF)

 		
 Comments

 		
 Drift generator

 		
 Comments

 		
 Easy noise generation

 		
 Comments

 		
 Fast Exponential Envelope Generator

 		
 Comments

 		
 Fast LFO in Delphi…

 		
 Comments

 		
 Fast SIN approximation for usage in e.g. additive synthesizers

 		
 Comments

 		
 Fast Whitenoise Generator

 		
 Comments

 		
 Fast sine and cosine calculation

 		
 Comments

 		
 Fast sine wave calculation

 		
 Comments

 		
 Fast square wave generator

 		
 Comments

 		
 Gaussian White Noise

 		
 Comments

 		
 Gaussian White noise

 		
 Comments

 		
 Generator

 		
 Comments

 		
 Inverted parabolic envelope

 		
 Comments

 		
 Matlab/octave code for minblep table generation

 		
 PADsynth synthesys method

 		
 Comments

 		
 PRNG for non-uniformly distributed values from trigonometric identity

 		
 Parabolic shaper

 		
 Phase modulation Vs. Frequency modulation

 		
 Phase modulation Vs. Frequency modulation II

 		
 Comments

 		
 Pseudo-Random generator

 		
 PulseQuad

 		
 Pulsewidth modulation

 		
 Quick & Dirty Sine

 		
 Comments

 		
 Quick and dirty sine generator

 		
 Comments

 		
 RBJ Wavetable 101

 		
 Randja compressor

 		
 Comments

 		
 Rossler and Lorenz Oscillators

 		
 Comments

 		
 SawSin

 		
 Simple Time Stretching-Granular Synthesizer

 		
 Sine calculation

 		
 Smooth random LFO Generator

 		
 Square Waves

 		
 Comments

 		
 Trammell Pink Noise (C++ class)

 		
 Comments

 		
 Waveform generator using MinBLEPS

 		
 Comments

 		
 Wavetable Synthesis

 		
 Weird synthesis

 		
 Comments

 		
 Analysis

 		
 Beat Detector Class

 		
 Comments

 		
 Coefficients for Daubechies wavelets 1-38

 		
 DFT

 		
 Envelope detector

 		
 Comments

 		
 Envelope follower with different attack and release

 		
 Comments

 		
 FFT

 		
 Comments

 		
 FFT classes in C++ and Object Pascal

 		
 Fast in-place Walsh-Hadamard Transform

 		
 Frequency response from biquad coefficients

 		
 Comments

 		
 Java FFT

 		
 LPC analysis (autocorrelation + Levinson-Durbin recursion)

 		
 Comments

 		
 Look ahead limiting

 		
 Magnitude and phase plot of arbitrary IIR function, up to 5th order

 		
 Comments

 		
 Measuring interpollation noise

 		
 QFT and DQFT (double precision) classes

 		
 Simple peak follower

 		
 Comments

 		
 Tone detection with Goertzel

 		
 Comments

 		
 Tone detection with Goertzel (x86 ASM)

 		
 Comments

 		
 Vintage VU meters tutorial

 		
 Filters

 		
 1 pole LPF for smooth parameter changes

 		
 Comments

 		
 1-RC and C filter

 		
 Comments

 		
 18dB/oct resonant 3 pole LPF with tanh() dist

 		
 1st and 2nd order pink noise filters

 		
 3 Band Equaliser

 		
 Comments

 		
 303 type filter with saturation

 		
 4th order Linkwitz-Riley filters

 		
 Comments

 		
 All-Pass Filters, a good explanation

 		
 Another 4-pole lowpass…

 		
 Comments

 		
 Bass Booster

 		
 Biquad C code

 		
 Biquad, Butterworth, Chebyshev N-order, M-channel optimized filters

 		
 Comments

 		
 Butterworth Optimized C++ Class

 		
 Comments

 		
 C++ class implementation of RBJ Filters

 		
 C-Weighed Filter

 		
 Comments

 		
 Cascaded resonant lp/hp filter

 		
 Comments

 		
 Cool Sounding Lowpass With Decibel Measured Resonance

 		
 Comments

 		
 DC filter

 		
 Comments

 		
 Delphi Class implementation of the RBJ filters

 		
 Digital RIAA equalization filter coefficients

 		
 Comments

 		
 Direct Form II biquad

 		
 Comments

 		
 Direct form II

 		
 Comments

 		
 Fast Downsampling With Antialiasing

 		
 Comments

 		
 Formant filter

 		
 Comments

 		
 Frequency warped FIR lattice

 		
 Comments

 		
 Hilbert Filter Coefficient Calculation

 		
 Hiqh quality /2 decimators

 		
 Karlsen

 		
 Comments

 		
 Karlsen Fast Ladder

 		
 Comments

 		
 LP and HP filter

 		
 Comments

 		
 LPF 24dB/Oct

 		
 Comments

 		
 Lowpass filter for parameter edge filtering

 		
 Comments

 		
 MDCT and IMDCT based on FFTW3

 		
 Comments

 		
 Moog Filter

 		
 Comments

 		
 Moog VCF

 		
 Comments

 		
 Moog VCF, variation 1

 		
 Comments

 		
 Moog VCF, variation 2

 		
 Comments

 		
 Notch filter

 		
 Comments

 		
 One pole LP and HP

 		
 Comments

 		
 One pole filter, LP and HP

 		
 Comments

 		
 One pole, one zero LP/HP

 		
 Comments

 		
 One zero, LP/HP

 		
 One-Liner IIR Filters (1st order)

 		
 Comments

 		
 Output Limiter using Envelope Follower in C++

 		
 Peak/Notch filter

 		
 Comments

 		
 Perfect LP4 filter

 		
 Comments

 		
 Pink noise filter

 		
 Comments

 		
 Plot Filter (Analyze filter characteristics)

 		
 Comments

 		
 Plotting R B-J Equalisers in Excel

 		
 Comments

 		
 Polyphase Filters

 		
 Comments

 		
 Polyphase Filters (Delphi)

 		
 Poor Man’s FIWIZ

 		
 Prewarping

 		
 RBJ Audio-EQ-Cookbook

 		
 Comments

 		
 RBJ Audio-EQ-Cookbook

 		
 Comments

 		
 Remez Exchange Algorithm (Parks/McClellan)

 		
 Remez Remez (Parks/McClellan)

 		
 Resonant IIR lowpass (12dB/oct)

 		
 Comments

 		
 Resonant filter

 		
 Comments

 		
 Resonant low pass filter

 		
 Reverb Filter Generator

 		
 Simple Tilt equalizer

 		
 Comments

 		
 Simple biquad filter from apple.com

 		
 Comments

 		
 Spuc’s open source filters

 		
 State Variable Filter (Chamberlin version)

 		
 Comments

 		
 State Variable Filter (Double Sampled, Stable)

 		
 Comments

 		
 State variable

 		
 Comments

 		
 Stilson’s Moog filter code

 		
 Comments

 		
 Time domain convolution with O(n^log2(3))

 		
 Comments

 		
 Time domain convolution with O(n^log2(3))

 		
 Type : LPF 24dB/Oct

 		
 Comments

 		
 Various Biquad filters

 		
 Comments

 		
 Windowed Sinc FIR Generator

 		
 Comments

 		
 Zoelzer biquad filters

 		
 Comments

 		
 Effects

 		
 2 Wave shaping things

 		
 Comments

 		
 Alien Wah

 		
 Band Limited PWM Generator

 		
 Comments

 		
 Bit quantization/reduction effect

 		
 Comments

 		
 Class for waveguide/delay effects

 		
 Compressor

 		
 Comments

 		
 Decimator

 		
 Comments

 		
 Delay time calculation for reverberation

 		
 Dynamic convolution

 		
 Comments

 		
 ECE320 project: Reverberation w/ parameter control from PC

 		
 Early echo’s with image-mirror technique

 		
 Fold back distortion

 		
 Guitar feedback

 		
 Comments

 		
 Lo-Fi Crusher

 		
 Comments

 		
 Lookahead Limiter

 		
 Most simple and smooth feedback delay

 		
 Comments

 		
 Most simple static delay

 		
 Comments

 		
 Parallel combs delay calculation

 		
 Phaser code

 		
 Comments

 		
 Polynominal Waveshaper

 		
 Comments

 		
 Reverberation Algorithms in Matlab

 		
 Comments

 		
 Reverberation techniques

 		
 Simple Compressor class (C++)

 		
 Comments

 		
 Soft saturation

 		
 Comments

 		
 Stereo Enhancer

 		
 Comments

 		
 Stereo Field Rotation Via Transformation Matrix

 		
 Comments

 		
 Stereo Width Control (Obtained Via Transfromation Matrix)

 		
 Comments

 		
 Time compression-expansion using standard phase vocoder

 		
 Transistor differential amplifier simulation

 		
 UniVox Univibe Emulator

 		
 Variable-hardness clipping function

 		
 Comments

 		
 WaveShaper

 		
 Waveshaper

 		
 Waveshaper

 		
 Comments

 		
 Waveshaper (simple description)

 		
 Comments

 		
 Waveshaper :: Gloubi-boulga

 		
 Comments

 		
 Other

 		
 16-Point Fast Integer Sinc Interpolator.

 		
 16-to-8-bit first-order dither

 		
 3rd order Spline interpollation

 		
 Comments

 		
 5-point spline interpollation

 		
 Comments

 		
 Allocating aligned memory

 		
 Antialiased Lines

 		
 Comments

 		
 Automatic PDC system

 		
 Comments

 		
 Base-2 exp

 		
 Comments

 		
 Bit-Reversed Counting

 		
 Comments

 		
 Block/Loop Benchmarking

 		
 Comments

 		
 Branchless Clipping

 		
 Comments

 		
 Calculate notes (java)

 		
 Center separation in a stereo mixdown

 		
 Comments

 		
 Center separation in a stereo mixdown

 		
 Cheap pseudo-sinusoidal lfo

 		
 Comments

 		
 Clipping without branching

 		
 Comments

 		
 Constant-time exponent of 2 detector

 		
 Comments

 		
 Conversion and normalization of 16-bit sample to a floating point number

 		
 Comments

 		
 Conversions on a PowerPC

 		
 Cubic interpollation

 		
 Cure for malicious samples

 		
 Comments

 		
 Denormal DOUBLE variables, macro

 		
 Comments

 		
 Denormal numbers

 		
 Comments

 		
 Denormal numbers, the meta-text

 		
 Denormalization preventer

 		
 Denormalization preventer

 		
 Comments

 		
 Dither code

 		
 Dithering

 		
 Double to Int

 		
 Comments

 		
 Envelope Follower

 		
 Comments

 		
 Exponential curve for

 		
 Comments

 		
 Exponential parameter mapping

 		
 Comments

 		
 Fast Float Random Numbers

 		
 Comments

 		
 Fast abs/neg/sign for 32bit floats

 		
 Comments

 		
 Fast binary log approximations

 		
 Comments

 		
 Fast cube root, square root, and reciprocal for x86/SSE CPUs.

 		
 Fast exp() approximations

 		
 Comments

 		
 Fast exp2 approximation

 		
 Fast log2

 		
 Comments

 		
 Fast power and root estimates for 32bit floats

 		
 Fast rounding functions in pascal

 		
 Comments

 		
 Fast sign for 32 bit floats

 		
 Comments

 		
 Float to int

 		
 Comments

 		
 Float to int (more intel asm)

 		
 Comments

 		
 Float to integer conversion

 		
 Comments

 		
 Float-to-int, coverting an array of floats

 		
 Comments

 		
 Gaussian dithering

 		
 Gaussian random numbers

 		
 Hermite Interpolator (x86 ASM)

 		
 Comments

 		
 Hermite interpollation

 		
 Comments

 		
 Linear interpolation

 		
 Comments

 		
 Lock free fifo

 		
 Comments

 		
 MATLAB-Tools for SNDAN

 		
 MIDI note/frequency conversion

 		
 Comments

 		
 Matlab Time Domain Impulse Response Inverter/Divider

 		
 Millimeter to DB (faders…)

 		
 Comments

 		
 Motorola 56300 Disassembler

 		
 Comments

 		
 Noise Shaping Class

 		
 Comments

 		
 Nonblocking multiprocessor/multithread algorithms in C++

 		
 Comments

 		
 Piecewise quadratic approximate exponential function

 		
 Pow(x,4) approximation

 		
 Rational tanh approximation

 		
 Comments

 		
 Reading the compressed WA! parts in gigasampler files

 		
 Really fast x86 floating point sin/cos

 		
 Reasonably accurate/fastish tanh approximation

 		
 Comments

 		
 Resampling

 		
 Comments

 		
 Saturation

 		
 Comments

 		
 Sin(x) Aproximation (with SSE code)

 		
 Comments

 		
 Sin, Cos, Tan approximation

 		
 Comments

 		
 VST SDK GUI Switch without

 		
 Comments

