# Resonant filter¶

• Author or source: Paul Kellett
• Created: 2002-01-17 02:07:02
notes
```This filter consists of two first order low-pass filters in
series, with some of the difference between the two filter
outputs fed back to give a resonant peak.

You can use more filter stages for a steeper cutoff but the
stability criteria get more complicated if the extra stages
are within the feedback loop.
```
code
 ```1 2 3 4 5 6 7``` ```//set feedback amount given f and q between 0 and 1 fb = q + q/(1.0 - f); //for each sample... buf0 = buf0 + f * (in - buf0 + fb * (buf0 - buf1)); buf1 = buf1 + f * (buf0 - buf1); out = buf1; ```

• Date: 2006-01-18 10:59:55
• By: mr.just starting
```very nice! how could i turn that into a HPF?
```
```The cheats way is to use HPF = sample - out;
If you do a plot, you'll find that it isn't as good as designing an HPF from scratch, but it's good enuff for most ears.
This would also mean that you have a quick method for splitting a signal and operating on the (in)discreet parts separately. :) DSP
```
```This filter calculates bandpass and highpass outputs too during calculation, namely bandpass is buf0 - buf1 and highpass is in - buf0. So, we can rewrite the algorithm:

// f and fb calculation
f = 2.0*sin(pi*freq/samplerate);
/* you can approximate this with f = 2.0*pi*freq/samplerate with tuning error towards nyquist */
fb = q + q/(1.0 - f);

// loop
hp = in - buf0;
bp = buf0 - buf1;
buf0 = buf0 + f * (hp + fb * bp);
buf1 = buf1 + f * (buf0 - buf1);

out = buf1; // lowpass
out = bp; // bandpass
out = hp; // highpass

The slope of the highpass out is not constant, it varies between 6 and 12 dB/Octave with different f and q settings. I'd be interested if anyone derived a proper highpass output from this algorithm.

-- peter schoffhauzer
```